

Robot Programming with Lisp 8. Coordinate Transformations, TF, ActionLib

Arthur Niedzwiecki (and other members of IAI)

Institute for Artificial Intelligence University of Bremen

December 9th, 2021

Coordinate Transformations 3D Geometry Basics Rotation Representations Homogeneous Transformations

TF Library

Action Lib

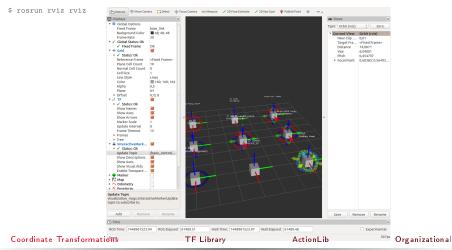
Coordinate Transformations	TF Library	ActionLib	Organizational
Arthur Niedzwiecki(and other members of IAI)		Robo	t Programming with Lisp
December 9 th , 2021			2

Coordinate Transformations 3D Geometry Basics

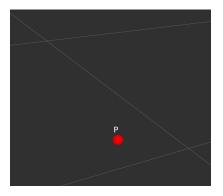
Rotation Representations Homogeneous Transformations

TF Library

Action Lib

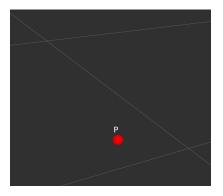

Coordinate Transformations	TF Library	ActionLib	Organizational
Arthur Niedzwiecki(and other members of IAI)		Robo	ot Programming with Lisp
December 9 th , 2021			3

\$ roscore


\$ rosrun interactive_marker_tutorials basic_controls

Arthur Niedzwiecki(and other members of IAI) December 9th, 2021 Robot Programming with Lisp

• What is a point in space? How do we represent it?


 Coordinate Transformations
 TF Library
 ActionLib
 Organizational

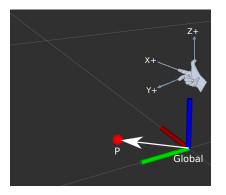
 Arthur Niedzwiecki(and other members of IAI)
 Robot Programming with Lisp
 5

 December 9th, 2021
 5
 5

- What is a point in space? How do we represent it?
- Cartesian coordinates (x, y, z)

ActionLib

Arthur Niedzwiecki(and other members of IAI) December 9th, 2021


TF Library

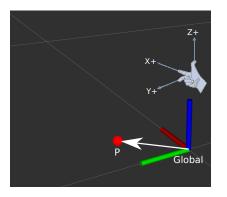
Coordinate Transformations

Robot Programming with Lisp 6

TF Library

- What is a point in space? How do we represent it?
- Cartesian coordinates (x, y, z)
- Reference frame $_{global}P = (0.1, 0.1, 0.0)$

ActionLib


Arthur Niedzwiecki(and other members of IAI) December 9th, 2021

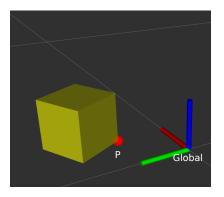
Coordinate Transformations

Robot Programming with Lisp 7

TF Library

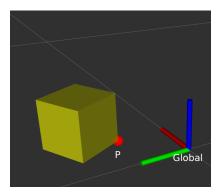
- What is a point in space? How do we represent it?
- Cartesian coordinates (x, y, z)
- Reference frame $_{global}P = (0.1, 0.1, 0.0)$
- Right-hand rule: $(X, Y, Z) \rightarrow (R, G, B)$

ActionLib


Arthur Niedzwiecki(and other members of IAI) December 9th, 2021

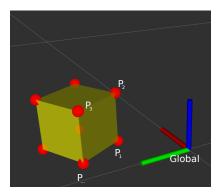
Coordinate Transformations

Robot Programming with Lisp 8



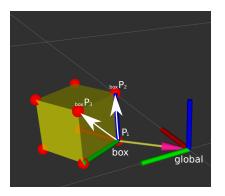
• How do we represent an object in 3D?

Coordinate Transformations	TF Library	ActionLib	Organizational
Arthur Niedzwiecki(and other members of	of IAI)	Rob	ot Programming with Lisp
December 9 th , 2021			9

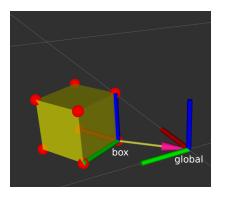


- How do we represent an object in 3D?
- What is an object?

Coordinate Transformations	TF Library	ActionLib	Organizational
Arthur Niedzwiecki(and other members of	of IAI)	Rot	oot Programming with Lisp
December 9 th , 2021			10



- How do we represent an object in 3D?
- What is an object?
- Problem: all vertices change coordinates during movement


- How do we represent an object in 3D?
- What is an object?
- Problem: all vertices change coordinates during movement
- Solution: describe points on object relative to an object frame

 $_{global}P_1 = (0.1, 0.1, 0.0)$ $_{box}P_1 = (0.0, 0.0, 0.0)$

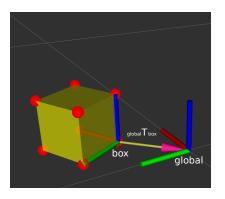
Coordinate Transformations	TF Library	ActionLib	Organizational
Arthur Niedzwiecki(and other members of	f IAI)	Rob	ot Programming with Lisp
December 9 th , 2021			12

Coordinate Transformations

TF Library

- How do we represent an object in 3D?
- What is an object?
- Problem: all vertices change coordinates during movement
- Solution: describe points on object relative to an object frame

 $_{global}P_1 = (0.1, 0.1, 0.0)$ $_{box}P_1 = (0.0, 0.0, 0.0)$


 What do we need to describe the object frame? ActionLib
 Organizational

Arthur Niedzwiecki(and other members of IAI) December 9th, 2021

3D Geometry Basics Coordinates of a frame

- *box* has a position and orientation relative to *global*
- *position* & *orientation* together are called *pose*
- global T_{box} is a transformation that transforms poses from box to global
- How do we represent position and orientation?

Coordinate Transformations	TF Library	ActionLib	Organizational
Arthur Niedzwiecki(and other members of	IAI)	Robe	ot Programming with Lisp
December 9 th , 2021			14

Coordinate Transformations

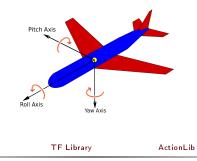
3D Geometry Basics Rotation Representations Homogeneous Transformation

TF Library

Action Lib

Coordinate Transformations	TF Library	ActionLib	Organizational
Arthur Niedzwiecki(and other members of IAI)	Robo	t Programming with Lisp
December 9 th , 2021			15

Rotation Representations


There are 4 common ways to describe rotations:

- euler angles
- rotation matrix
- axis-angle
- quaternion

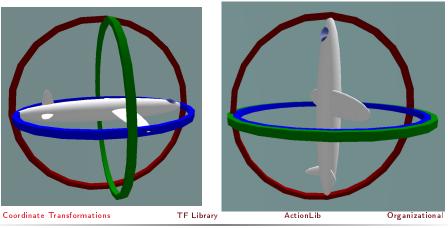
Coordinate Transformations	TF Library	ActionLib	Organizational
Arthur Niedzwiecki(and other members o	f IAI)	Rob	ot Programming with Lisp
December 9 th , 2021			16

- Describes orientation using 3 angles: roll (x-rotation), pitch (y-rotation), yaw (z-rotation)
- Rotations are applied in sequence. What is the sequence is defined through a convention. There are many conventions, most common are z-y-x, x-y-z and z-x-z

Arthur Niedzwiecki(and other members of IAI) December 9th, 2021

Coordinate Transformations

Pros/Cons


- + easy to interpret
- has a Gimbal lock problem
- not suited for interpolation
- there are many possible conventions, always make sure you know which one is used!
- \rightarrow only useful for user interaction

Euler Angles Gimbal lock

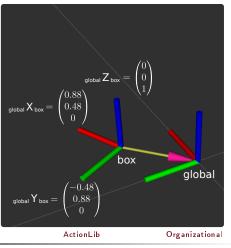
Loss of one degree of freedom, e.g. after 90° pitch (in this case red axis).

Arthur Niedzwiecki(and other members of IAI) December 9th, 2021 Robot Programming with Lisp 19

Rotation Matrix

- 3×3 matrix R
- is an orthogonal matrix, i.e. det(R) = 1 and $R^{-1} = R^T$
- this means, all raw (and correspondingly column) vectors are unit vectors, orthogonal to each other

• example:
$$R = \begin{pmatrix} \cos(\theta) & -\sin(\theta) & 0\\ \sin(\theta) & \cos(\theta) & 0\\ 0 & 0 & 1 \end{pmatrix}$$
 rotates about z-axis by θ



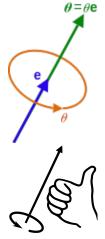
Rotation Matrix Interpretation

- example: $R = \begin{pmatrix} \cos(\theta) & -\sin(\theta) & 0\\ \sin(\theta) & \cos(\theta) & 0\\ 0 & 0 & 1 \end{pmatrix}$ rotates about z-axis by θ
- $_{global}R_{box} = \begin{pmatrix} 0.88 & -0.48 & 0 \\ 0.48 & 0.88 & 0 \\ 0 & 0 & 1 \end{pmatrix}$
- columns are axis of box in the global coordinate frame

Coordinate Transformations

TF Library

Rotation Matrix Pros/Cons


- + easiest to do math with
 - rotate a vector with rotation matrix using matrix multiplication
 - rotation matrices can be combined using matrix multiplication
- + easy to construct rotation matrix from 3 vectors
- + can be extended to include translation in 4x4 matrix
- uses 9 numbers to describe 3 degrees of freedom
- matrix operations result in buildup of rounding error, you might have to normalize often
- not suitable for interpolation

- any rotation can be represented as right hand rotation by θ degree about a unit vector e
- angle can be encoded in length of the vector

$$\begin{pmatrix} e_{x} \\ e_{y} \\ e_{z} \end{pmatrix}, \theta \to \begin{pmatrix} \theta e_{x} \\ \theta e_{y} \\ \theta e_{z} \end{pmatrix}$$

• can be rotated by rotation matrices using matrix multiplication

University

Coordinate Transformations

TF Library

ActionLib

Organizational

Arthur Niedzwiecki(and other members of IAI) December 9th, 2021 Robot Programming with Lisp 23

Axis-Angle Pros/Cons

- math can get unstable when θ is close to 0 or $\pi,$ because there are infinitively many possible axis
- represents rotation by θ differently from $\theta+2\pi,$ but it is the same rotation
- + easy interpolation, just scale the angle, but take into account that $\theta=\theta+2\pi$
- \rightarrow more useful when describing rotation differences/changes instead of orientations, found in ROS messages like Twist or Accel.

• q = (x, y, z, w)

- number system introduced by Hamilton as an extension of complex numbers, only use case is representation of rotations
- only unit quaternions are used to represent rotations
- can be interpreted as an improved version of axis-angle

•
$$\begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix}$$
, $\alpha \to \begin{pmatrix} a_x \cdot \sin(\alpha/2) \\ a_y \cdot \sin(\alpha/2) \\ a_z \cdot \sin(\alpha/2) \\ \cos(\alpha/2) \end{pmatrix}$

Coordinate Transformations

TF Library

ActionLib

Quaternion Pros/Cons

- + in contrast to axis-angle, stable when angle is close to zero and π
- + removes the $\theta = \theta + 2\pi$ problem from axis-angle
- + more compact representation than rotation matrices
- + best for interpolation (slerp algorithm)
- difficult to interpret
- \rightarrow most useful for interpolation and describing orientations ROS standard for representing poses

Rotations representations Conclusion

- use euler angles only on an interface level
- use axis-angle or quaternion for rigid body dynamics
- use quaternions when storing/sending orientation information or for interpolation
- else use rotation matrices for easy mathematical operations

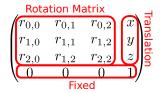
Coordinate Transformations

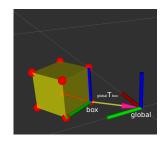
3D Geometry Basics Rotation Representations Homogeneous Transformations

TF Library

Action Lib

Coordinate Transformations	TF Library	ActionLib	Organizational
Arthur Niedzwiecki(and other members of	IAI)	Robo	ot Programming with Lisp
December 9 th , 2021			28





- 4 x 4 matrix to represent pose transformations
- ${}_{a}T_{b}$ means transform from frame b to a, i.e.: ${}_{a}T_{b} \cdot {}_{b}P = {}_{a}P$
- _aT_b is the same as _aP_b, i.e. pose of origin of b in a
- combined transformation:
 - $_{c}T_{b}\cdot _{b}T_{a}=_{c}T_{a}$
- invertible: ${}_{b}T_{a}^{-1} = {}_{a}T_{b}$
- but ${}_{b}T_{a}^{-1} \neq {}_{b}T_{a}^{T}$

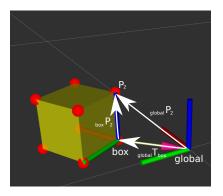
Coordinate Transformations

TF Library

ActionLib

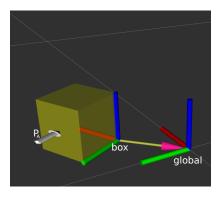
• How do we do
$$_{c}T_{b} \cdot _{b}P = _{c}P$$
?

• Append 1 to point *P*, before matrix multiplication:


$$\begin{pmatrix} r_{0,0} & r_{0,1} & r_{0,2} & x \\ r_{1,0} & r_{1,1} & r_{1,2} & y \\ r_{2,0} & r_{2,1} & r_{2,2} & z \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} p_x \\ p_y \\ p_z \\ 1 \end{pmatrix} = \begin{pmatrix} r_{0,0}p_x + r_{0,1}p_y + r_{0,2}p_z + x \cdot 1 \\ r_{1,0}p_x + r_{1,1}p_y + r_{1,2}p_z + y \cdot 1 \\ r_{2,0}p_x + r_{2,1}p_y + r_{2,2}p_z + z \cdot 1 \\ 0p_x + 0p_y + 0p_z + 1 \cdot 1 \end{pmatrix}$$

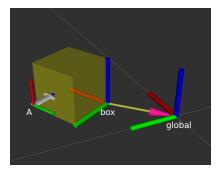
 Coordinate Transformations
 TF Library
 ActionLib
 Organizational

 Arthur Niedzwiecki(and other members of IAI)
 Robot Programming with Lisp
 30


• to transform $_{box}P_2$ into the global frame $_{global}P_2$, multiply with $_{global}T_{box}$

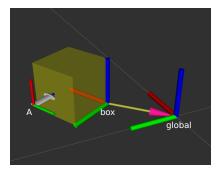
•
$$_{global}P_2 =_{global} T_{box} \cdot_{box} P_2$$

Coordinate Transformations	TF Library	ActionLib	Organizational
Arthur Niedzwiecki(and other members of IAI)		R	obot Programming with Lisp
December 9 th , 2021			31



- what is the pose of P_A in global coordinate frame: global P_A?
- choose frame where it is the easiest to express a pose
- $_{box}P_A = (0.05, 0.15, 0.05, 1.0)$
- $_{global}P_A =_{global} T_{box} \cdot_{box} P_A$

Coordinate Transformations	TF Library	ActionLib	Organizational
Arthur Niedzwiecki(and other members of	IAI)	Rob	ot Programming with Lisp
December 9 th , 2021			32



$$_{box} T_A = \begin{pmatrix} & 0.05 \\ & 0.15 \\ & 0.05 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$_{box} T_{\mathcal{A}} = egin{pmatrix} 0 & -1 & 0 & 0.05 \ 0 & 0 & -1 & 0.15 \ 1 & 0 & 0 & 0.05 \ 0 & 0 & 0 & 1 \end{pmatrix}$$

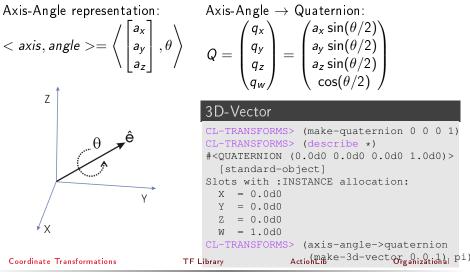
 Coordinate Transformations
 TF Library
 ActionLib
 Organizational

 Arthur Niedzwiecki(and other members of IAI)
 Robot Programming with Lisp
 December 9th, 2021
 34

Points in ROS Lisp

```
Point in 3D: \{x, y, z\}
```

3D-Vector


```
CL-TRANSFORMS> (make-3d-vector 1 2 3)
#<3D-VECTOR (1.0d0 2.0d0 3.0d0)>
CL-TRANSFORMS> (describe *)
#<3D-VECTOR (1.0d0 2.0d0 3.0d0)>
[standard-object]
Slots with :INSTANCE allocation:
X = 1.0d0
Y = 2.0d0
Z = 3.0d0
CL-TRANSFORMS> (y **)
2.0d0
```

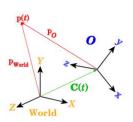
Arthur Niedzwiecki(and other members of IAI) December 9th, 2021

Rotations in ROS Lisp

Arthur Niedzwiecki(and other members of IAI) December 9th, 2021

Poses in ROS Lisp

cl-transforms:pose


```
CL-TRANSFORMS> (setf p (make-pose
(make-3d-vector 1 2 0)
(make-quaternion 0 0 0 1)))
#<POSE
#<3D-VECTOR (1.0d0 2.0d0 0.0d0)>
#<QUATERNION (0.0d0 0.0d0 1.0d0)>>
CL-TRANSFORMS> (origin p)
#<3D-VECTOR (1.0d0 2.0d0 0.0d0)>
CL-TRANSFORMS> (orientation p)
#<QUATERNION (0.0d0 0.0d0 0.0d0 1.0d0)>
```

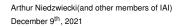
Coordinate Transformations	TF Library	ActionLib	Organizational
Arthur Niedzwiecki(and other members of IAI)		Ro	bot Programming with Lisp
December 9 th . 2021			37

Transformations in ROS Lisp

Transformations

```
CL-TRANSFORMS> (setf W (make-identity-pose))
#<POSE
  #<3D-VECTOR (0.0d0 0.0d0 0.0d0)>
   #<QUATERNION (0.0d0 0.0d0 0.0d0 1.0d0)>>
CL-TRANSFORMS> (setf O (make-pose
                         (make-3d-vector 2 0 0)
                         (make-quaternion 0 0 0 1))
#<POSE
  #<3D-VECTOR (2.0d0 0.0d0 0.0d0)>
   #<OUATERNION (0.0d0 0.0d0 0.0d0 1.0d0)>>
CL-TRANSFORMS> (transform
                (transform-inv (pose->transform 0)
                p)
#<POSE
   #<3D-VECTOR (-1.0d0 2.0d0 0.0d0)>
   #<OUATERNION (0.0d0 0.0d0 0.0d0 1.0d0)>>
```

Coordinate Transformations	TF Library	ActionLib	Organizational
Arthur Niedzwiecki(and other members of	of IAI)	Rob	ot Programming with Lisp
December 9th 2021			38


Coordinate Transformations 3D Geometry Basics Rotation Representations Homogeneous Transformations

TF Library

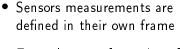
Action Lib

Organizational

Coordinate Transformations	TF Library	ActionLib	Organizational
Arthur Niedzwiecki(and other members of	IAI)	Robo	ot Programming with Lisp
December 9 th , 2021			39

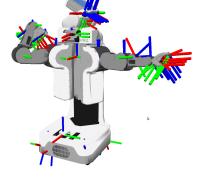
Coordinate Transformations

Artificial Intelligence


Motivation

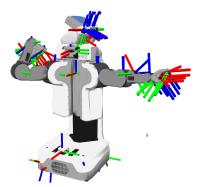
TF Library

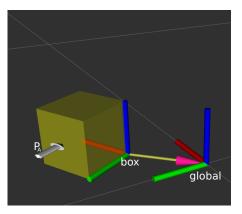
Action lib


Organizational

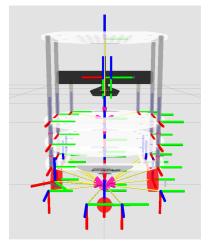
• Example: transformations from

camera to hand coordinates are needed for grasping objects


 Links change their position over time (including the robot base)



- Robots consist of many parts aka links
- Each link has its own coordinate frame



Coordinate Transformations	TF Library	ActionLib	Organizational
Arthur Niedzwiecki(and other members of IAI)		R	obot Programming with Lisp
December 9 th , 2021			41

TurtleBot Coordinate Frames

Coordinate Transformations

TF Library

ActionLib

Image courtesy: Yujin Robot Organizational

Arthur Niedzwiecki(and other members of IAI) December 9th, 2021 Robot Programming with Lisp 42

Tracking Coordinate Frame Changes

- Transforms are produced by different nodes:
 - Localization node (AMCL, gmapping) for finding robot's pose in map
 - Odometry node (base driver) for tracking movement since initial pose
 - Joint positions (robot controllers and robot_state_publisher)
- Many publishers, many consumers
- Distributed system, redundancy issues, ...

• **TF**: a coordinate frame tracking system

Coordinate Transformations	TF Library	ActionLib	Organizational
Arthur Niedzwiecki(and other members of IAI)		Rol	oot Programming with Lisp
December 9 th , 2021			43

What is tf?

transform Library – a distributed coordinate frame tracking system

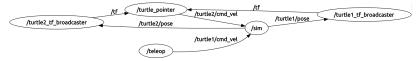
- Standardized protocol for publishing transforms to tf listeners
- Looking up and calculating transforms by asking tf listeners
- tf listener can be either local Lisp program or global tf buffer
- default global tf buffer is TF2's buffer_server
- ROS API for looking up, calculating and sending transforms
- Transforms are published on /tf and /tf_static topics: /tf
 - for all transforms that change over time
 - publish with a fixed rate, even if transform didn't change

/tf_static

- assumed to be static, thus never outdated
- useful for reducing redundancy
- only publish once with latched flag

Coordinate Transformations

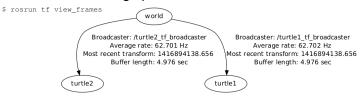
TF Library


ActionLib

Launch the turtlesim TF demo:

\$ roslaunch turtle_tf turtle_tf_demo.launch

- view_frames
- tf_echo
- tf_monitor
- static_transform_publisher
- RViz


Coordinate Transformations	TF Library	ActionLib	Organizational
Arthur Niedzwiecki(and other members of IAI)		Ro	bot Programming with Lisp
December 9 th , 2021			46

rosrun tf view_frames

Generate a TF tree graph:

- TF tree consists of frames (links) and the transforms between them.
- Each transform is cached (10 secs default caching time)
- Transforms must form a proper tree (no cycles)
- Can have disconnected trees, but you can only ask for transforms inside of the same tree

Coordinate Transformations	TF Library	ActionLib	Organizational
Arthur Niedzwiecki(and other members of IA	d)	Robo	t Programming with Lisp
December 9 th , 2021			47

\$ rosrun tf tf_echo <source_frame> <target_frame>

Coordinate Transformations	TF Library	ActionLib	Organizational
Arthur Niedzwiecki(and other members of	IAI)	Rob	ot Programming with Lisp
December 9 th , 2021			48

Utilities static_transform_publisher

- rosrun tf2_ros static_transform_publisher x y z yaw pitch roll frame_id child_frame_id or rosrun tf2_ros static_transform_publisher x y z qx qy qz qw frame_id child_frame_id
- publishes _{global} T_{box}

static transform publisher

\$ rosrun tf2_ros static_transform_publisher 0.1 0.1 0 3.14 0 0 global box

Coordinate Transformations	TF Library	ActionLib	Organizational
Arthur Niedzwiecki(and other members of	IAI)	Rob	ot Programming with Lisp
December 9 th 2021			49

tf monitor

rosrun tf tf monitor

monitor

\$ rosrun tf tf monitor RESULTS: for all Frames

Frames.

Frame: turtle1 published by /turtle1_tf_broadcaster Average Delay: 0.000382455 Max Delay: 0... Frame: turtle2 published by /turtle2 tf broadcaster Average Delay: 0.000267847 Max Delay: 0...

All Broadcasters. Node: /turtle1 tf broadcaster 64.6996 Hz, Average Delay: 0.000382455 Max Delay: 0.000991178 Node: /turtle2_tf_broadcaster 64.7127 Hz, Average Delay: 0.000267847 Max Delay: 0.00133464

Coordinate Transformations	TF Library	ActionLib	Organizational
Arthur Niedzwiecki(and other members of IAI)			Robot Programming with Lisp
December 9 th , 2021			50

tf2_msgs/TFMessage

```
geometry_msgs/TransformStamped[]
                                  transforms
 • frame id: name of the
                                   std msgs/Header header
                                    uint32 seq
   published frame
                                    time stamp
                                    string frame id
 • child_frame_id has to
                                   string child_frame_id
   be an existing frame
                                   geometry_msgs/Transform transform
                                    geometry_msgs/Vector3 translation

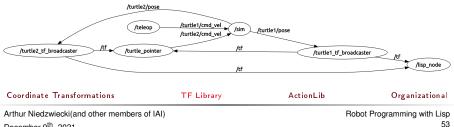
    stamp: time when this

                                      float64 x
   transform is valid
                                      float64 v
                                      float64 z
 • child frame id Tframe id
                                    geometry msgs/Ouaternion rotation
                                      float64 x
                                      float64 v
                                      float.64 z
                                      float64 w
Coordinate Transformations
                             TF Library
                                                Action lib
                                                                 Organizational
```

Arthur Niedzwiecki(and other members of IAI)

December 9th, 2021

- tf buffers transforms for X seconds
- possible to lookup transforms from the past
- tf interpolates frames
- tf does not extrapolate! it can't see into the future



cl tf



December 9th 2021

\$ rosrun rviz rviz

Coordinate Transformations TF Library ActionLib Organizational Arthur Niedzwiecki(and other members of IAI) Robot Programming with Lisp December 9th, 2021 54

Coordinate Transformations 3D Geometry Basics Rotation Representations Homogeneous Transformations

TF Library

${\sf ActionLib}$

Organizational

Coordinate Transformations	TF Library	ActionLib	Organizational
Arthur Niedzwiecki(and other members of IAI)		Robot	Programming with Lisp
December 9 th , 2021			55

Interface to define and execute goals:

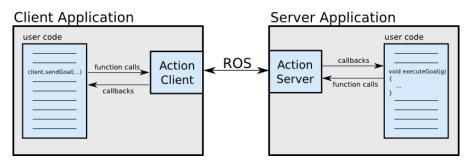
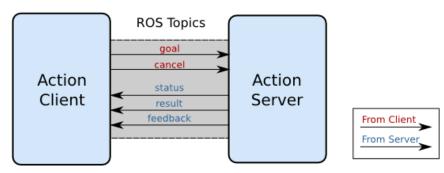


Illustration source: ROS actionlib wiki

Coordinate Transformations	TF Library	ActionLib	Organizational
Arthur Niedzwiecki(and other members of	IAI)	Robo	ot Programming with Lisp
December 9 th , 2021			56



Action Protocol

Relies on ROS topics to transport messages.

Action Interface

Illustration source: ROS actionlib wiki

Coordinate Transformations	TF Library	ActionLib	Organizational
Arthur Niedzwiecki(and other members of IAI)			Robot Programming with Lisp
December 9 th , 2021			57

_ _ _

Action Definitions

- Similar to messages and services.
- Definition: request + result + feedback
- Defined in your_package/action/*.action
- Example: actionlib_tutorials/Fibonacci.action

```
# goal definition
int32 order
```

```
# result definition
int32[] sequence
```

```
# feedback
int32[] sequence
```

Coordinate Transformations	TF Library	ActionLib	Organizational
Arthur Niedzwiecki(and other members of	IAI)	Rob	ot Programming with Lisp
December 9th 2021			58

Coordinate Transformations 3D Geometry Basics Rotation Representations Homogeneous Transformations

TF Library

Action Lib

Organizational

Coordinate Transformations	TF Library	ActionLib	Organizational
Arthur Niedzwiecki(and other members of I	AI)	Robe	ot Programming with Lisp
December 9 th , 2021			59

• Gilbert Strang's MIT course on linear algebra (free access):

https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/

Coordinate Transformations	TF Library	ActionLib	Organizational
Arthur Niedzwiecki(and other members of IA	l)	R	obot Programming with Lisp
December 9 th , 2021			60

- Assignment points: 7 points
- TF Lisp tutorial:

http://wiki.ros.org/cl_tf/Tutorials/clTfBasicUsage

• ActionLib Lisp tutorial (Section 1 and 2, not 3):

http://wiki.ros.org/actionlib_lisp/Tutorials/actionlibBasicUsage

• Next class: 16.12, 14:15

Coordinate Transformations	TF Library	ActionLib	Organizational
Arthur Niedzwiecki(and other members of IAI)			Robot Programming with Lisp
December 9 th , 2021			61

Thanks for your attention!

