

Robot Programming with Lisp 1. Introduction, Setup

Arthur Niedzwiecki

Institute for Artificial Intelligence University of Bremen

21st October, 2021

Lecturer: Arthur (PhD student at IAI)

- Tutor: Vanessa (PhD student at IAI)
- Correspondence: aniedz@cs.uni-bremen.de, hassouna@uni-bremen.de
- Dates: Thursdays, 14:15 15:45, 16:15 17:45
- Language: English and German
- Credits: 6 ECTS (4 SWS)
- Course type: practical course
- Course number: 03-BE-710.98b
- Location: TAB Building, Room 0.36 EG

Course Content

Introduction	Course Content	Organizational	Assignment
Arthur Niedzwiecki		R	bot Programming with Lisp
21 st October, 2021			3

Course content

Common Lisp

Artificial Intelligence

Robot Operating System (ROS)

Robot platform

Introduction

Course Content

Organizational

Assignment

Robot Programming with Lisp

Arthur Niedzwiecki 21st October, 2021

• Full-featured industry-standard programming language

Introduction	Course Content	Organizational	Assignment

- Full-featured industry-standard programming language
- Means for functional programming
- Means for imperative programming
- Means for OOP

Location of the	the set of the set of the
Introd	luction

Course Content

- Full-featured industry-standard programming language
- Means for functional programming
- Means for imperative programming
- Means for OOP
- Fast prototyping through read-eval-print loop and dynamic typing

Introduction

Course Content

Organizational

Robot Programming with Lisp

- Full-featured industry-standard programming language
- Means for functional programming
- Means for imperative programming
- Means for OOP
- Fast prototyping through read-eval-print loop and dynamic typing
- Compiles into machine code

Introduction

Course Content

Organizational

- Full-featured industry-standard programming language
- Means for functional programming
- Means for imperative programming
- Means for OOP
- Fast prototyping through read-eval-print loop and dynamic typing
- Compiles into machine code
- Best choice for symbolic processing (AI, theorem proving, etc.)

- Full-featured industry-standard programming language
- Means for functional programming
- Means for imperative programming
- Means for OOP
- Fast prototyping through read-eval-print loop and dynamic typing
- Compiles into machine code
- Best choice for symbolic processing (AI, theorem proving, etc.)
- Good choice for writing domain-specific programming languages (e.g., robot programming languages)

Introduction	Course Content	Organizational	Assignment
Arthur Niedzwiecki			Robot Programming with Lisp
21 st October, 2021			10

- Full-featured industry-standard programming language
- Means for functional programming
- Means for imperative programming
- Means for OOP
- Fast prototyping through read-eval-print loop and dynamic typing
- Compiles into machine code
- Best choice for symbolic processing (AI, theorem proving, etc.)
- Good choice for writing domain-specific programming languages (e.g., robot programming languages)

Applications using / written in dialects of Lisp:

Emacs, AutoCAD, Grammarly, Mirai (Gollum animation), Google ITA (airplane ticket price planner AI), DART (DARPA logistics AI), Maxima (computer algebra system), AI frameworks, NASA satellites ... Introduction Course Content Organizational Assignment

Middleware for communication of the components of a robotic system

- Middleware for communication of the components of a robotic system
- "Meta-Operating System" for programming robotics software (configuring, starting / stopping, logging etc. software components)

- Middleware for communication of the components of a robotic system
- "Meta-Operating System" for programming robotics software (configuring, starting / stopping, logging etc. software components)
- Powerful build system (based on CMake), with a strong focus on integration and documentation

Course Content

- Middleware for communication of the components of a robotic system
- "Meta-Operating System" for programming robotics software (configuring, starting / stopping, logging etc. software components)
- Powerful build system (based on CMake), with a strong focus on integration and documentation
- Language-independent architecture: C++, Python, Lisp and more

Course Content

University of Bremen

- Middleware for communication of the components of a robotic system
- "Meta-Operating System" for programming robotics software (configuring, starting / stopping, logging etc. software components)
- Powerful build system (based on CMake), with a strong focus on integration and documentation
- Language-independent architecture: C++, Python, Lisp and more
- According to ROS 2020 Community Metrics Report,
 - More than 2 million unique pageviews wiki.ros.org a month
 - More than 38 million downloads of .deb packages a month

University of Bremen

- Middleware for communication of the components of a robotic system
- "Meta-Operating System" for programming robotics software (configuring, starting / stopping, logging etc. software components)
- Powerful build system (based on CMake), with a strong focus on integration and documentation
- \bullet Language-independent architecture: C++, Python, Lisp and more
- According to ROS 2020 Community Metrics Report,
 - More than 2 million unique pageviews wiki.ros.org a month
 - More than 38 million downloads of .deb packages a month
- De facto standard in modern robotics

- 2 controllable wheels
- 2D laser scanner
- Thinkpad E485 PC with bluetooth
- PlayStation joystick

Course Content

Organizational

• ROS supports a number of languages

Course Content

Organizational

- ROS supports a number of languages
- Lisp is good for rapid prototyping

Introduction

Course Content

Organizational

- ROS supports a number of languages
- Lisp is good for rapid prototyping
- It is more suitable for symbolic reasoning and AI

Intr	odu	i ctu	n
IIILI	ouu	CLIV	

Course Content

- ROS supports a number of languages
- Lisp is good for rapid prototyping
- It is more suitable for symbolic reasoning and AI
- There are existing robot programming languages in Lisp that automate decision making

Introduction	Course Content	Organizational	Assignment
Arthur Niedzwiecki			Robot Programming with Lisp
21 st October, 2021			22

Assignments (single, this year)

- Introduction & Setup
- Lisp basics
- OOP & Failure Handling
- Functional programming
- Search Algorithms

Assignments (single, this year)

- Introduction & Setup
- Lisp basics
- OOP & Failure Handling
- Functional programming
- Search Algorithms

Intermediate (until mid Jan '22)

- ROS Lisp API (roslisp)
- 2D world of *turtlesim*
- Coordinate frames of *TF*

Rough schedule

Assignments (single, this year)

- Introduction & Setup
- Lisp basics
- OOP & Failure Handling
- Functional programming
- Search Algorithms

Intermediate (until mid Jan '22)

- ROS Lisp API (*roslisp*)
- 2D world of *turtlesim*
- Coordinate frames of *TF*

Project (groups, Jan-Feb '22)

- Controlling TortugaBot
- Reading sensor data
- Collision avoidance
- Heuristic decision-making
- The big day: competition

Introduction

Course Content

Organizational

Software requirements

Bringing a *personal laptop* is encouraged.

OS:	Ubuntu 18.04 (or any Linux with bootstrapped 18.04)
IDE:	Emacs 24+
Version control:	Git
Packaging system:	ROS
Lisp software:	SBCL compiler, ASDF build system, Emacs plugin for Common Lisp

Introduction	Course Content	Organizational	Assignment
Arthur Niedzwiecki		Ro	bot Programming with Lisp
21 st October, 2021			26

University

You will learn / improve your skills in the following:

- Linux
- Git
- Emacs
- Functional programming
- Common Lisp, of course
- ROS (for future roboticists)

...and get to play with a real little robot!

Course Content

Organizational

Assignment

Introduction Course Content Organizational Assignment Arthur Niedzwiecki Robot Programming with Lisp 21st October, 2021 28

Course final grade: 100 points = 50 homework + 50 group project. •

- Course final grade: 100 points = 50 homework + 50 group project.
- To participate in the project you need at least 25 points from the homeworks, otherwise it's a fail.

Inti	co du	icti	on
IIILI	out	JUU	

Course Content

- Course final grade: 100 points = 50 homework + 50 group project.
- To participate in the project you need at least 25 points from the homeworks, otherwise it's a fail.
- Final grade: 50 of 100 points 4.0, 100 of 100 points 1.0.

Introduction			
	ntroc	duiction.	
nuouucuon		auction	

Course Content

- Course final grade: 100 points = 50 homework + 50 group project.
- To participate in the project you need at least 25 points from the homeworks, otherwise it's a fail.
- Final grade: 50 of 100 points 4.0, 100 of 100 points 1.0.

• Grade =
$$\frac{(100 - P_{your})}{(100 - 50)} * 3 + 1$$

Introduction	Course Content	Organizational	Assignment
Arthur Niedzwiecki		Rot	ot Programming with Lisp
21 st October, 2021			32

Homework assignments

• Homework assignments will mostly consist of filling in the missing gaps in already existing code.

Introduction	Course Content	Organizational	Assignment
Arthur Niedzwiecki			Robot Programming with Lisp
21 st October, 2021			33

21st October, 2021

Homework assignments

- Homework assignments will mostly consist of filling in the missing gaps in already existing code.
- That code will be hosted on GitLab.

Introduction	Course Content	Organizational	Assignment
Arthur Niedzwiecki			Robot Programming with Lisp

Homework assignments

- Homework assignments will mostly consist of filling in the missing gaps in already existing code.
- That code will be hosted on GitLab.
- The code you write should be uploaded to GitLab (https://gitlab.informatik.uni-bremen.de/).

Introduction

Course Content

Homework assignments

- Homework assignments will mostly consist of filling in the missing gaps in already existing code.
- That code will be hosted on GitLab.
- The code you write should be uploaded to GitLab (https://gitlab.informatik.uni-bremen.de/).
- Homework is due in one week.

Introduction	Course Content	Organizational	Assignment
Arthur Niedzwiecki			Robot Programming with Lisp
21 st October, 2021			36

Homework assignments

- Homework assignments will mostly consist of filling in the missing gaps in already existing code.
- That code will be hosted on GitLab.
- The code you write should be uploaded to GitLab (https://gitlab.informatik.uni-bremen.de/).
- Homework is due in one week.
- Solutions are discussed in the tutorial.

Introduction	Course Content	Organizational	Assignment
Arthur Niedzwiecki			Robot Programming with Lisp
21 st October, 2021			37

Homework assignments

- Homework assignments will mostly consist of filling in the missing gaps in already existing code.
- That code will be hosted on GitLab.
- The code you write should be uploaded to GitLab (https://gitlab.informatik.uni-bremen.de/).
- Homework is due in one week.
- Solutions are discussed in the tutorial.
- Can get 60 of 50 points in homework (can skip one homework).

Homework assignments

- Homework assignments will mostly consist of filling in the missing gaps in already existing code.
- That code will be hosted on GitLab.
- The code you write should be uploaded to GitLab (https://gitlab.informatik.uni-bremen.de/).
- Homework is due in one week.
- Solutions are discussed in the tutorial.
- Can get 60 of 50 points in homework (can skip one homework).
- Bonus points for very good homework solutions.

Introduction	Course Content	Organizational	Assignment
Arthur Niedzwiecki			Robot Programming with Lisp
21 st October, 2021			39

• Emacs cheat sheet:

https://www.gnu.org/software/emacs/refcards/pdf/refcard.pdf

• Git reference book:

http://git-scm.com/book/de

• Lisp books:

http://landoflisp.com/, http://www.paulgraham.com/onlisp.html, http://www.gigamonkeys.com/book/

Introduction	Course Content	Organizational	Assignment
Arthur Niedzwiecki			Robot Programming with Lisp

University of Bremer

Next class:

- Date: 28.10
- Time: 14:15 (14:00 14:15 for questions)
- Place: same room (TAB 0.36)

Assignment:

- Due: 27.10, Wednesday, 23:59
- Points: 3 points
- For questions: write an email to Vanessa or Arthur

Introduction	Course Content	Organizational	Assignment
Arthur Niedzwiecki		Ro	bot Programming with Lisp
21 st October, 2021			41

Introduction

Course Content

Organizational

Assignment

Introduction	Course Content	Organizational	Assignment
Arthur Niedzwiecki			Robot Programming with Lisp
21 st October, 2021			42

Assignment goals

Set up your working environment

Get comfortable with Emacs

Introduction

Course Content

Organizational

Assignment

Arthur Niedzwiecki 21st October, 2021 Robot Programming with Lisp 43

We need Ubuntu 18.04. Depending on your current system, do this:

• Ubuntu 18.04

Congrats, go further to Task 2: Install ROS.

Introd	luction
	accion

We need Ubuntu 18.04. Depending on your current system, do this:

- Ubuntu 18.04 Congrats, go further to Task 2: Install ROS.
- Windows
 Install Ubuntu alongside Windows as Dual-Boot
 Or use Ubuntu with WSL in Windows
 (his DOC is a local state)

https://jack-kawell.com/2020/06/12/ros-ws12/ (skip ROS install for now)

Introduction

Course Content

Organizational

Assignment

We need Ubuntu 18.04. Depending on your current system, do this:

- Ubuntu 18.04 Congrats, go further to Task 2: Install ROS.
- Windows Install Ubuntu alongside Windows as Dual-Boot Or use Ubuntu with WSL in Windows

https://jack-kawell.com/2020/06/12/ros-ws12/ (skip ROS install for now)

• Linux Dual-Boot or this, for a smooth solution:

https://ai.uni-bremen.de/wiki/infrastructure/schroot-18.04-on-20.04

Introduction	Course Content	Organizational	Assignment
Arthur Niedzwiecki			Robot Programming with Lisp
21 st October, 2021			46

We need Ubuntu 18.04. Depending on your current system, do this:

- Ubuntu 18.04 Congrats, go further to Task 2: Install ROS.
- Windows Install Ubuntu alongside Windows as Dual-Boot Or use Ubuntu with WSL in Windows

https://jack-kawell.com/2020/06/12/ros-wsl2/ (skip ROS install for now)

 Linux Dual-Boot or this, for a smooth solution:

https://ai.uni-bremen.de/wiki/infrastructure/schroot-18.04-on-20.04

 MacOS Dual-boot or VM with VirtualBox (if Mac is incompatible)

Introduction	Course Content	Organizational	Assignment
Arthur Niedzwiecki			Robot Programming with Lisp
21 st October, 2021			47

• Check your gear for how old it is. Especially new machines don't support 18.04 anymore.

Introduction	Course Content	Organizational

Assignment

- Check your gear for how old it is. Especially new machines don't support 18.04 anymore.
- < 2019 like Intel CPU 9th gen and older: Download Ubuntu 18.04 installation .iso (Bionic Beaver) (ubuntu-18.04.6-desktop-amd64.iso) https://releases.ubuntu.com/18.04/

Introduction

Course Content

Organizational

- Check your gear for how old it is. Especially new machines don't support 18.04 anymore.
- < 2019 like Intel CPU 9th gen and older: Download Ubuntu 18.04 installation .iso (Bionic Beaver) (ubuntu-18.04.6-desktop-amd64.iso) https://releases.ubuntu.com/18.04/
- For newer machines, download 20.04 (Focal Fossa): (ubuntu-20.04.3-desktop-amd64.iso) https://releases.ubuntu.com/20.04/

- Check your gear for how old it is. Especially new machines don't support 18.04 anymore.
- < 2019 like Intel CPU 9th gen and older: Download Ubuntu 18.04 installation .iso (Bionic Beaver) (ubuntu-18.04.6-desktop-amd64.iso) https://releases.ubuntu.com/18.04/
- For newer machines, download 20.04 (Focal Fossa): (ubuntu-20.04.3-desktop-amd64.iso) https://releases.ubuntu.com/20.04/
- When in doubt, try 18.04 first, we'll need it anyway.
 Follow the steps on the next slide and do 'Try out Ubuntu' instead of installing.
 Press the Super-Key (Windows-Key) and search for 'About'.

If the graphics driver is **not** llvmpipe, your machine supports 18.04.

Introduction	Course Content	Organizational	Assignment

Task 1: Install Ubuntu: Installation

• Create a boot USB with the .iso (or burn a DVD). *Hint*: In Windows use the Universal USB installer:

http://www.pendrivelinux.com/universal-usb-installer-easy-as-1-2-3/

In Linux, use the Startup Disk Creator or unetbootin.

Int	rod	1110	+ 17	nn.
1111	100	iuc		211

Course Content

Organizational

Task 1: Install Ubuntu: Installation

• Create a boot USB with the .iso (or burn a DVD). *Hint*: In Windows use the Universal USB installer:

http://www.pendrivelinux.com/universal-usb-installer-easy-as-1-2-3/
In Linux, use the Startup Disk Creator or unetbootin.

• Reboot with the USB plugged in to install Ubuntu. Dual boot installation with default settings is a one click thing.

Introduction	Course Content	Organizational	Assignment
Arthur Niedzwiecki			Robot Programming with Lisp
21 st October, 2021			53

Task 1: Install Ubuntu: For new hardware

• Follow this for new hardware that doesn't support 18.04 anymore.

Anthun Niedmusie elsi		Dal	est Deserversing with Lies
Introduction	Course Content	Organizational	Assignment

Task 1: Install Ubuntu: For new hardware

- Follow this for new hardware that doesn't support 18.04 anymore.
- Go to this guide to install 18.04 within your current Linux system:

https://ai.uni-bremen.de/wiki/infrastructure/schroot-18.04-on-20.04

Introduction	Course Content	Organizational	Assignment
Arthur Niedzwiecki		Babi	t Brogromming with Lion

Task 1: Install Ubuntu: For new hardware

- Follow this for new hardware that doesn't support 18.04 anymore.
- Go to this guide to install 18.04 within your current Linux system: https://ai.uni-bremen.de/wiki/infrastructure/schroot-18.04-on-20.04
- Remeber to stay in the 18.04 'jail' for everything regarding this lecture.

meroducerom		Intr	od	uc	tio	n
-------------	--	------	----	----	-----	---

Course Content

Organizational

 How do I boot from USB / CD? You should enter either "Boot Menu" or "BIOS Menu" during reboot https://www.brynux.com/tutorials/boot-keys

Introduction Course Content Organizational Assignment	Anthum Niedmusie elsi			Debet Dreamaning with Lier
	Introduction	Course Content	Organizational	Assignment

- How do I boot from USB / CD? You should enter either "Boot Menu" or "BIOS Menu" during reboot https://www.brynux.com/tutorials/boot-keys
- Windows doesn't let me into "BIOS Menu"! You should restart into the "Boot Options Menu" of your Windows: hold down "Shift" while pressing "Restart".

Introduction

Course Content

Organizational

Assignment

- How do I boot from USB / CD? You should enter either "Boot Menu" or "BIOS Menu" during reboot https://www.brynux.com/tutorials/boot-keys
- Windows doesn't let me into "BIOS Menu"! You should restart into the "Boot Options Menu" of your Windows: hold down "Shift" while pressing "Restart".
- My BIOS supports UEFI, Ubuntu won't install!
 It should work but if you can't get it to run turn off the UEFI mode: restart into the "Boot Options Menu" of your Windows, choose "Troubleshoot", then "UEFI Firmware Settings"

- How do I boot from USB / CD? You should enter either "Boot Menu" or "BIOS Menu" during reboot https://www.brynux.com/tutorials/boot-keys
- Windows doesn't let me into "BIOS Menu"! You should restart into the "Boot Options Menu" of your Windows: hold down "Shift" while pressing "Restart".
- My BIOS supports UEFI, Ubuntu won't install!
 It should work but if you can't get it to run turn off the UEFI mode: restart into the "Boot Options Menu" of your Windows, choose "Troubleshoot", then "UEFI Firmware Settings"
- It still doesn't work! Write an email to Vanessa or Arthur

Introduction	Course Content	Organizational	Assignment
Arthur Niedzwiecki			Robot Programming with Lisp
21 st October 2021			60

Consult the official installation instructions for troubleshooting: http://wiki.ros.org/melodic/Installation/Ubuntu In short, it boils down to executing the following in the terminal (*hint*: to open a fresh terminal press <Ctrl>+<Alt>+t):

• Add ROS repositories to your sources list:

sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu bionic main" > /etc/apt/sources.list.d/ros-latest.list'

Introduction	Course Content	Organizational	Assignment	
Arthur Niedzwiecki			Robot Programming with Lisp	

62

Task 2: Install ROS

Consult the official installation instructions for troubleshooting: http://wiki.ros.org/melodic/Installation/Ubuntu In short, it boils down to executing the following in the terminal (*hint*: to open a fresh terminal press <Ctrl>+<Alt>+t):

• Add ROS repositories to your sources list:

sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu bionic main" > /etc/apt/sources.list.d/ros-latest.list'

Add their key to your trusted public keys:

sudo apt install curl

curl -s https://raw.githubusercontent.com/ros/rosdistro/master/ros.asc | sudo apt-key add -

Introduction	Course Content	Organizational	Assignment
Arthur Niedzwiecki			Robot Programming with Lisp

Consult the official installation instructions for troubleshooting: http://wiki.ros.org/melodic/Installation/Ubuntu In short, it boils down to executing the following in the terminal (*hint*: to open a fresh terminal press <Ctrl>+<Alt>+t):

• Add ROS repositories to your sources list:

sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu bionic main" > /etc/apt/sources.list.d/ros-latest.list'

Add their key to your trusted public keys:

sudo apt install curl

curl -s https://raw.githubusercontent.com/ros/rosdistro/master/ros.asc | sudo apt-key add -

Update your Debian package index:

sudo apt-get update

Introduction	Course Content	Organizational	Assignment
Arthur Niedzwiecki			Robot Programming with Lisp
21 st October, 2021			63

Consult the official installation instructions for troubleshooting: http://wiki.ros.org/melodic/Installation/Ubuntu In short, it boils down to executing the following in the terminal (*hint*: to open a fresh terminal press <Ctrl>+<Alt>+t):

• Add ROS repositories to your sources list:

sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu bionic main" > /etc/apt/sources.list.d/ros-latest.list'

Add their key to your trusted public keys:

sudo apt install curl

curl -s https://raw.githubusercontent.com/ros/rosdistro/master/ros.asc | sudo apt-key add -

• Update your Debian package index:

sudo apt-get update

• The version of ROS distributed with Ubuntu 18.04 is **ROS Melodic**. Install the **desktop** package.

sudo apt-get install ros-melodic-desktop

Introduction	Course Content	Organizational	Assignment
Arthur Niedzwiecki			Robot Programming with Lisp
21 st October, 2021			64

Consult the official installation instructions for troubleshooting: http://wiki.ros.org/melodic/Installation/Ubuntu In short, it boils down to executing the following in the terminal (*hint*: to open a fresh terminal press <Ctrl>+<Alt>+t):

• Add ROS repositories to your sources list:

sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu bionic main" > /etc/apt/sources.list.d/ros-latest.list'

Add their key to your trusted public keys:

sudo apt install curl

curl -s https://raw.githubusercontent.com/ros/rosdistro/master/ros.asc | sudo apt-key add -

• Update your Debian package index:

sudo apt-get update

• The version of ROS distributed with Ubuntu 18.04 is **ROS Melodic**. Install the **desktop** package.

sudo apt-get install ros-melodic-desktop

Install the workspace management tools:

 sudo apt install python-rosdep python-rosinstall python-rosinstall-generator python-wstool build-essential

 Introduction
 Course Content
 Organizational
 Assignment

Arthur Niedzwiecki 21st October, 2021

Consult the official installation instructions for troubleshooting: http://wiki.ros.org/melodic/Installation/Ubuntu

In short, it boils down to executing the following in the terminal:

• Setup rosdep:

sudo rosdep init && rosdep update

Austlesson NICe alessed a stat			Balant Bus meneric south Line
Introduction	Course Content	Organizational	Assignment

Consult the official installation instructions for troubleshooting: http://wiki.ros.org/melodic/Installation/Ubuntu

In short, it boils down to executing the following in the terminal:

Setup rosdep:

sudo rosdep init && rosdep update

• Initialize the ROS environment for this particular terminal:

source /opt/ros/melodic/setup.bash

Introduction	Course Content	Organizational	Assignment
Arthur Niedzwiecki			Robot Programming with Lisp
21 st October, 2021			67

Consult the official installation instructions for troubleshooting: http://wiki.ros.org/melodic/Installation/Ubuntu

In short, it boils down to executing the following in the terminal:

• Setup rosdep:

sudo rosdep init && rosdep update

- Initialize the ROS environment for this particular terminal: source /opt/ros/melodic/setup.bash
- Create a directory where the code you'll write will be stored (the name ros_ws and the location ~ can be changed):
 mkdir -p ~/ros_ws/src

Consult the official installation instructions for troubleshooting: http://wiki.ros.org/melodic/Installation/Ubuntu

In short, it boils down to executing the following in the terminal:

• Setup rosdep:

sudo rosdep init && rosdep update

- Initialize the ROS environment for this particular terminal: source /opt/ros/melodic/setup.bash
- Create a directory where the code you'll write will be stored (the name ros_ws and the location ~ can be changed):
 mkdir -p ^/ros_ws/src
- Initialize the workspace:

cd ~/ros_ws && catkin_make

Introduction	Course Content	Organizational	Assignment
Arthur Niedzwiecki			Robot Programming with Lisp
21 st October, 2021			69

Consult the official installation instructions for troubleshooting: http://wiki.ros.org/melodic/Installation/Ubuntu

In short, it boils down to executing the following in the terminal:

• Setup rosdep:

sudo rosdep init && rosdep update

- Initialize the ROS environment for this particular terminal: source /opt/ros/melodic/setup.bash
- Create a directory where the code you'll write will be stored (the name ros_ws and the location ~ can be changed):
 mkdir -p ^/ros_ws/src
- Initialize the workspace:

cd ~/ros_ws && catkin_make

• Update your bash startup script and make sure it worked:

 echo -e "\n# ROS\nsource \$HOME/ros_vs/devel/setup.bash\n" >> 7/.bashrc &k tail 7/.bashrc &k source 7/.bashrc

 Introduction
 Course Content
 Organizational
 Assignment

Arthur Niedzwiecki 21st October, 2021

Task 4: Git and GitLab

 \bullet Log into university GitLab with your LDAP / TZI account:

https://gitlab.informatik.uni-bremen.de/

Authors Nicolausia alsi		D	hat December 2010 with 1 inc
Introduction	Course Content	Organizational	Assignment

Task 4: Git and GitLab

- Log into university GitLab with your LDAP / TZI account:

https://gitlab.informatik.uni-bremen.de/

• Click on "+ New Project", call the project lisp_course_exercises and make sure it is private.

nurg	νaι	ICU	on	

- Log into university GitLab with your LDAP / TZI account: https://eitlab.informatik.uni-bremen.de/
- Click on "+ New Project", call the project lisp_course_exercises and make sure it is private.
- Once created, in "Members" add "Arthur Niedzwiecki" and "Vanessa Hassouna" as collaborators. "Project Access" is master.

Introduction

Course Content

Organizational

Assignment

Arthur Niedzwiecki 21st October, 2021

- Log into university GitLab with your LDAP / TZI account: https://gitlab.informatik.uni-bremen.de/
- Click on "+ New Project", call the project lisp_course_exercises and make sure it is private.
- Once created, in "Members" add "Arthur Niedzwiecki" and "Vanessa Hassouna" as collaborators. "Project Access" is master.
- Install Git:

sudo apt-get install git

ntrod	uction
nuou	uction

Course Content

Organizational

- Log into university GitLab with your LDAP / TZI account: https://gitlab.informatik.uni-bremen.de/
- Click on "+ New Project", call the project lisp_course_exercises and make sure it is private.
- Once created, in "Members" add "Arthur Niedzwiecki" and "Vanessa Hassouna" as collaborators. "Project Access" is master.
- Install Git:

sudo apt-get install git

• Download the course material into your ROS workspace:

roscd && cd ../src

git clone https://gitlab.informatik.uni-bremen.de/lisp-course/lisp_course_exercises.git && ll

Introduction	Course Content	Organizational	Assignment
Arthur Niedzwiecki			Robot Programming with Lisp
21 st October, 2021			75

- Log into university GitLab with your LDAP / TZI account: https://gitlab.informatik.uni-bremen.de/
- Click on "+ New Project", call the project lisp_course_exercises and make sure it is private.
- Once created, in "Members" add "Arthur Niedzwiecki" and "Vanessa Hassouna" as collaborators. "Project Access" is master.
- Install Git:

sudo apt-get install git

• Download the course material into your ROS workspace:

roscd && cd ../src

git clone https://gitlab.informatik.uni-bremen.de/lisp-course/lisp_course_exercises.git && ll

• Define a remote target with the address of your new GitLab repo:

cd lisp_course_exercises

git remote add my-repo https://gitlab.informatik.uni-bremen.de/YOUR_GITLAB_USERNAME/lisp_course_exercises.git

Introduction	Course Content	Organizational	Assignment
Arthur Niedzwiecki			Robot Programming with Lisp
21 st October, 2021			76

- Log into university GitLab with your LDAP / TZI account: https://gitlab.informatik.uni-bremen.de/
- Click on "+ New Project", call the project lisp_course_exercises and make sure it is private.
- Once created, in "Members" add "Arthur Niedzwiecki" and "Vanessa Hassouna" as collaborators. "Project Access" is master.
- Install Git:

sudo apt-get install git

• Download the course material into your ROS workspace:

roscd && cd ../src

git clone https://gitlab.informatik.uni-bremen.de/lisp-course/lisp_course_exercises.git && ll

• Define a remote target with the address of your new GitLab repo:

cd lisp_course_exercises

git remote add my-repo https://gitlab.informatik.uni-bremen.de/YOUR_GITLAB_USERNAME/lisp_course_exercises.git

• Upload the files to your new GitLab repo:

git push -u my-repo master Introduction	Course Content	Organizational	Assignment
Arthur Niedzwiecki			Robot Programming with Lisp

• Create an account on GitHub and get a student discount:

https://education.github.com/

A 11 A 12 1 1 1 1 1		8.1	
Introduction	Course Content	Organizational	Assignment

• Create an account on GitHub and get a student discount:

https://education.github.com/

• Click on "Start a project", call the project lisp_course_exercises. Once you get student discount, make the project private.

1	ntr	odu	icti	on

• Create an account on GitHub and get a student discount:

https://education.github.com/

- Click on "Start a project", call the project lisp_course_exercises. Once you get student discount, make the project private.
- In project "Settings" \to "Collaborators" add "Vanessa Hassouna" and "Arthur Niedzwiecki" as collaborators.

Introduction

Course Content

Organizational

Assignment

Create an account on GitHub and get a student discount:

https://education.github.com/

- Click on "Start a project", call the project lisp_course_exercises. Once you get student discount, make the project private.
- In project "Settings" \rightarrow "Collaborators" add "Vanessa Hassouna" and "Arthur Niedzwiecki" as collaborators.
- Install Git:

sudo apt-get install git

Introd	uction

Course Content

Organizational

Create an account on GitHub and get a student discount:

https://education.github.com/

- Click on "Start a project", call the project lisp_course_exercises. Once you get student discount, make the project private.
- In project "Settings" \rightarrow "Collaborators" add "Vanessa Hassouna" and "Arthur Niedzwiecki" as collaborators.
- Install Git:

sudo apt-get install git

Download the course material into your ROS workspace:

roscd && cd ../src

git clone https://github.com/lisp-course/lisp_course_exercises.git && ll

Introduction	Course Content	Organizational	Assignment
Arthur Niedzwiecki			Robot Programming with Lisp
21 st October, 2021			82

• Create an account on GitHub and get a student discount: https://education.github.com/

https://education.github.com/

- Click on "Start a project", call the project lisp_course_exercises. Once you get student discount, make the project private.
- In project "Settings" \to "Collaborators" add "Vanessa Hassouna" and "Arthur Niedzwiecki" as collaborators.
- Install Git:

sudo apt-get install git

• Download the course material into your ROS workspace:

roscd && cd ../src

git clone https://github.com/lisp-course/lisp_course_exercises.git && ll

• Define a remote target with the address of your new GitHub repo:

cd lisp_course_exercises

git remote add my-repo https://github.com/YOUR_GITHUB_USERNAME/lisp_course_exercises.git

Introduction	Course Content	Organizational	Assignment
Arthur Niedzwiecki			Robot Programming with Lisp
21 st October, 2021			83

• Create an account on GitHub and get a student discount: https://education.github.com/

https://education.github.com/

- Click on "Start a project", call the project lisp_course_exercises. Once you get student discount, make the project private.
- In project "Settings" \to "Collaborators" add "Vanessa Hassouna" and "Arthur Niedzwiecki" as collaborators.
- Install Git:

sudo apt-get install git

• Download the course material into your ROS workspace:

roscd && cd ../src

git clone https://github.com/lisp-course/lisp_course_exercises.git && ll

• Define a remote target with the address of your new GitHub repo:

cd lisp_course_exercises

git remote add my-repo https://github.com/YOUR_GITHUB_USERNAME/lisp_course_exercises.git

• Upload the files to your new GitHub repo:

git push -u my-repo master			
Introduction	Course Content	Organizational	Assignment
Arthur Niedzwiecki			Robot Programming with Lisp

Task 5: Install the IDE

• Install the editor itself (Emacs), the Common Lisp compiler (SBCL), the linker (ASDF) and the Emacs Common Lisp plugin (Slime):

sudo apt-get install ros-melodic-roslisp-repl

1.1.1.1.1.1		
Introd	luction	
1111100	luction	

Course Content

Organizational

Task 5: Install the IDE

- Install the editor itself (Emacs), the Common Lisp compiler (SBCL), the linker (ASDF) and the Emacs Common Lisp plugin (Slime): sudo apt-get install ros-melodic-roslisp-repl
- Start the editor (after compilation is finished you'll see the Lisp shell): roslisp_repl &

Introduction	Course Content	Organizational	Assignment
Arthur Niedzwiecki			Robot Programming with Lisp
21 st October, 2021			86

Task 6: Get familiar with Emacs

The following notation is used in Emacs for keyboard shortcuts:

C for <Ctrl>M for <Alt>

- SPC for <Space>
- RET for <Enter>
- - for when two keys are pressed together (e.g. C-x for <Ctrl>+x)

The basic shortcuts you will need are listed below:

- C-x C-f opens a file
- C-x 3 or C-x 2 opens a new tab, C-x 0 closes it, C-x 1 maximizes
- C-x o switches between tabs
- C-x b switches buffers, C-x C-b lists all open buffers, C-x k kills
- C-g cancels a command half-way, C-x C-c yes exits Emacs

Introduction	Course Content	Organizational	Assignment
Arthur Niedzwiecki			Robot Programming with Lisp
21 st October, 2021			87

Task 6: Get familiar with Emacs

The following notation is used in Emacs for keyboard shortcuts:

C for <Ctrl>M for <Alt>

- SPC for <Space>
- RET for <Enter>
- - for when two keys are pressed together (e.g. C-x for <Ctrl>+x)

The basic shortcuts you will need are listed below:

- C-x C-f opens a file
- C-x 3 or C-x 2 opens a new tab, C-x 0 closes it, C-x 1 maximizes
- C-x o switches between tabs
- C-x b switches buffers, C-x C-b lists all open buffers, C-x k kills
- C-g cancels a command half-way, C-x C-c yes exits Emacs

Open the file with your first assignment and follow the instructions:

ROS_WORKSPACE/src/lisp_course_exercises/assignment_1/src/orc-battle.lisp

Introduction	Course Content	Organizational	Assignment
Arthur Niedzwiecki			Robot Programming with Lisp
21 st October, 2021			88

• Once done editing orc-battle.lisp, check what's new in your local repo (the one on your hard drive):

cd ROS_WORKSPACE/src/lisp_course_exercises && git status

	Introduction	Course Content	Organizational
--	--------------	----------------	----------------

Assignment

• Once done editing orc-battle.lisp, check what's new in your local repo (the one on your hard drive):

cd ROS_WORKSPACE/src/lisp_course_exercises && git status

• To see which exactly lines changed ask for the diff (q to exit): $g_{\text{it diff}}$

Introduction Course Content Organizational Assignment

 Once done editing orc-battle.lisp, check what's new in your local repo (the one on your hard drive):

cd ROS_WORKSPACE/src/lisp_course_exercises && git status

- To see which exactly lines changed ask for the diff (q to exit): git diff
- The red files are the new untracked ones, the green ones are already in the Git index. To add new files to the index use git add .

ntro	tuct.	ion
111100	auce	

Course Content

Organizational

Assignment

• Once done editing orc-battle.lisp, check what's new in your local repo (the one on your hard drive):

cd ROS_WORKSPACE/src/lisp_course_exercises && git status

- To see which exactly lines changed ask for the diff (q to exit): $g_{\text{it diff}}$
- The red files are the new untracked ones, the green ones are already in the Git index. To add new files to the index use git add .
- If you deleted some files, to remove them from the index use $_{\rm git \ add \ -u}$

Introduction	Course Content	Organizational	Assignment
Arthur Niedzwiecki			Robot Programming with Lisp
21 st October, 2021			92

• Once done editing orc-battle.lisp, check what's new in your local repo (the one on your hard drive):

cd ROS_WORKSPACE/src/lisp_course_exercises && git status

- To see which exactly lines changed ask for the diff (q to exit): git diff
- The red files are the new untracked ones, the green ones are already in the Git index. To add new files to the index use git add .
- If you deleted some files, to remove them from the index use git add -u
- Once you're sure the changes are final, commit locally:

```
git commit -m "A meaningful commit message."
```

Introduction	Course Content	Organizational	Assignment
Arthur Niedzwiecki			Robot Programming with Lisp
21 st October, 2021			93

 Once done editing orc-battle.lisp, check what's new in your local repo (the one on your hard drive):

cd ROS_WORKSPACE/src/lisp_course_exercises && git status

- To see which exactly lines changed ask for the diff (q to exit): $g_{\text{it diff}}$
- The red files are the new untracked ones, the green ones are already in the Git index. To add new files to the index use git add .
- If you deleted some files, to remove them from the index use $_{\rm git \ add \ -u}$
- Once you're sure the changes are final, commit locally: git commit -m "A meaningful commit message."
- Finally, to upload your local commits to the GitLab server, push the changes upstream:

git push # or git push my-repo master Introduction Course Content Organizational Assignment Arthur Niedzwiecki Robot Programming with Lisp 21st October, 2021 94

Thanks for your attention!

Introduction

Course Content

Organizational

Assignment

Arthur Niedzwiecki 21st October, 2021 Robot Programming with Lisp 95