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Chapter 1

Introduction

Attention is a cognitive process that allows humans to concentrate selectively on regions, objects
and features of interest out of a multitude of possible targets. All magicians know how to
manipulate the attention of their audience in order to hide their tricks on stage. A bright
spotlight that illuminates only a part of the scene, a pretty assistant wearing a conspicuous
dress, a misleading comment or a suspicious movement distracts the audience from the trick by
tempting them to concentrate on irrelevant regions of the stage.

In psychophysics, human visual attention is often investigated by so called cueing experiments.
In these experiments, cues are given to human subjects in order to investigate their effect on
human visual attention. For example, the “Gorilla-Experiment” [SC99] is a well-known selective
attention experiment. In this experiment, a video of six people playing basketball in a hallway
is shown to human subjects. Three people wear white shirts and three people wear black shirts.
Human subjects have to count the number of passes made by people in white shirts. About
50% of all subjects did not notice a gorilla strolling through the video. This experiment shows
that humans concentrate on objects of interest based on goals and expectations while they may
miss other aspects of the scene. Even significant changes, like the appearance of a gorilla in a
sports scene, may remain unnoticed. The focus of attention is one of the mechanisms that makes
it possible for humans to accomplish complex activities without noticing and understanding
everything around them.

In this thesis, knowledge-based (top-down) attention is investigated in the context of mobile
robotics in the kitchen domain. Household robots have to accomplish everyday activities such as
the preparation of breakfasts. The preparation of breakfasts requires that household robots find
a set of items in the kitchen, carry items to the kitchen table as well it requires that household
robots arrange items on the table. For example, there could be a particular household where a
specific red cup is always used during breakfast. It is (usually) required to open drawers and
doors of cabinets in order to search for kitchen items. In unknown kitchens, it is hard to find the
location of the wanted item with only one try because the layout of kitchens differs significantly
between different households and individual habits. Thus, knowledge about the household can
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CHAPTER 1. INTRODUCTION

reduce the problem space in this scenario by focusing on likely locations of the wanted item. For
each investigated location, the robot has to estimate if a red cup is visible or not. Knowledge
about the appearance of cups as well as the knowledge that the wanted cup is red can be used
to focus the attention on visible regions, objects and features that might belong to the red cup.

The major contributions of this thesis are listed and explained to some extend in the following:

• Structure-Oriented Perception Control
Structure-oriented perception control is based on knowledge about the current task, objects
and perception methods that can be used to guide (control) the perception process. The
major purpose of the perception control mechanism is to reduce the search space of the
perception procedure based on attention mechanisms. Additionally, the perception control
framework is flexible: It allows the adaption to other domains then kitchens and to different
household tasks without modification of the source code. The adaptability is supported by
a user interface that is dedicated to the acquisition of control knowledge (i.e., knowledge
that is used to guide the perception of the robot). The problem domain (i.e., kitchens,
kitchen items, household activities and perception methods) is modeled hierarchically using
an ontology (the knowledge base). This knowledge base is used to infer different operations
that can be performed in particular situations (structure-oriented). For example, a set of
features for recognized objects is declared in the ontology. Each feature corresponds to a
perception method that must be executed in order to obtain a value for the feature.

• Modular Framework for Attention Methods
In the perception control framework, attention is modeled as a prioritization of the op-
erations that can be performed in a particular situation. The set of possible operations
is inferred from the knowledge base and it depends on the representation of the domain
knowledge (e.g., the set of features of recognized objects). Different attention methods can
be combined in the proposed framework using a prioritized sequence of attention methods.
Each attention method represents preferences for particular operations, objects and features.

• Attention-based on Relations between Objects
In this framework, it is possible to specify relations between items that are relevant for a
particular activity. For example, it is possible to specify the location of wanted items for
visual search tasks. This task knowledge can be used to focus the attention to a particu-
lar location in the kitchen. The location of items is modeled using spatial relations in the
knowledge base that is used by the perception control framework. The proposed attention
method is able to utilize knowledge about relations of objects in order to prefer objects and
features with relations to the current activity.

2



This thesis is organized as follows: The kitchen domain, the robot platform, perception methods
and household activities are described in chapter 2 along with the problem class of this application
domain as well as objectives and requirements. In chapter 3, different methods of top-down
attention are discussed with respect to the suitability for the application domain of this thesis.
The proposed structure-oriented perception control framework is formally defined and discussed
in more detail in chapter 4 and implementation details are described in chapter 5. Finally,
the framework is validated in chapter 6 based on varying system parameters and application
scenarios.
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Chapter 2

Motivation and Problem Statement

Visual search is an everyday problem with interesting characteristics for visual attention. For
visual search tasks, a target description is known in advance and the subject has to decide
whether there is an instance of the target visible or not. For example, finding known persons in
the audience of a concert is such a search task. There could be hundreds of people in the crowd,
far to many to look at each one in detail instantly. Nevertheless, humans can quickly find known
persons in crowds based on their goals and expectations (bounded visual search). For instance,
if it is known in advance that the searched person wears a red shirt, then any region in the scene
with a dominant red color is likely to attract attention while details of regions with a different
dominant color are more likely to remain unnoticed.

In psychophysical experiments, the efficiency of visual search is often measured by the reaction
time of human subjects with varying number of objects that differ from the target (distractors).
Tsotsos [Tso89] proved that bounded visual search has a time complexity linear in the number of
distractors while unbounded visual search is a problem that can’t be solved in acceptable time
in practice (the problem is NP-complete). Thus, the efficiency of the search procedure highly
depends on the knowledge about the target and the task. Efficient search is often accompanied
by so called pop-outs [Wol94]. For instance, visually searching for a unique red letter under a set
of black letters can be done in constant time by humans regardless of the number of black letters.
The unique red color of the letter reflexively engages the attention (pop-out effect). A visual
search process is called parallel if the time complexity is constant in the number of distractors,
otherwise the process is called sequential. The difference between parallel and sequential search
is illustrated in figure 2.1.

Attention can be influenced by data-driven (bottom-up) as well as model-driven (top-down) fac-
tors [DD95]. The most salient regions in a scene attract attention regardless of prior knowledge.
For example, the unexpected loud noise of a glass shattering on a floor or the sudden motion
of a knife falling from a table attracts attention in a bottom-up way. Top-down attention is
based on knowledge, expectations and current goals [CS02]. For instance, an expert cook who
regularly prepares vegetables is more likely to notice bad quality of vegetables in a shop then an
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(a) Parallel search. Target and dis-
tractors are differentiated by a
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..
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(b) Sequential search. Target and
distractors share more then one

visual property.

Figure 2.1 Visual search efficiency: It is more efficient to search for a letter that visually pops
out by the color (i.e., the red “X” on the left figure).

inexperienced cook. The expert cook has experience with vegetables and knows the appearance
of bad vegetables and where to look for bad spots. Both factors are important for everyday life.
The degree of importance depends on the current activity and environment. For some activities,
like driving a car, bottom-up attention is essential for survival. Car drivers have to react quickly
on unexpected events like a suddenly appearing obstacle. Suspicious velocity and shape of ob-
jects on the road attract the attention of car drivers in a bottom-up way. Top-down factors are
important too. For example, car drivers should know that it might be unnecessary to observe
the sky and that it is essential for survival to observe the road, sidewalk and the street signs.

The high amount of environmental stimuli humans can perceive at every moment is in general too
high to be completely processed in detail. This problem also occurs in many technical domains
with real-time requirements like computer vision, cognitive systems or mobile robotics. Au-
tonomous robots perceive environmental stimuli through artificial sensors like cameras or depth
sensors. Computational resources for processing, analyzing and understanding the large amount
of sensory data are limited and therefore mechanisms for the selection of the most interesting
regions, objects and features in a scene are desirable. Computational attention systems provide
such a mechanism that is inspired by psychological and neurobiological models of the human
cognition.

Attention applications in the robotic domain can roughly be distinguished in three categories
[FRC10]. The first category aims at finding the most salient Region of Interest (ROI) based
on low-level features for tasks like matching images with models in a database, segmentation
of images based on a similarity criterion or compression of images with stronger compression in
none focused regions. The mid-level category acts as a front-end for high-level tasks like object
recognition. Object recognition is the task of finding and identifying objects in a scene based on
unstructured data that was gathered from sensors. This task is often subdivided in three steps.
In the first step, the scene is segmented into several clusters based on low-level features of the

6



..
(a) 3D reconstruction of the scene based on a

RGB-D sensor.

..
(b) Labeled scene. Each color corresponds to a

different object category.

Figure 2.2 Labeling results for a household scene.

Source: http://ai.cs.washington.edu/projects/rgbd-object-recognition-and-detection

sensory signal (e.g., the perceived depth). In the second step, individual features of clusters (e.g.,
shape, color) are computed by perception methods in order to match the annotated clusters with
models (labels) known to the system in the last step. This labeling process is illustrated in figure
2.2. The highest-level category of computational attention systems aims at guiding the actions
of autonomous robots in a human-like way for tasks like object manipulation, robot navigation
or human-robot interaction.

In this thesis, knowledge-based (top-down) attention is investigated as a front-end for object
recognition. The attention and object recognition methods are integrated into an expert system.
Expert systems are used to solve complex problems where it is required to make decisions based
on knowledge. They consist of a knowledge base (information about things, their properties and
relations between them) and an inference engine (reasoning about knowledge). Additionally,
many expert systems include a control component. The control component is responsible for
the focusing on parts of the problem (e.g., ignore the sky while driving), the ordering of actions
(e.g., focus on color when searching for a red object), the selection and configuration of methods
to perform the actions (i.e., the selection and configuration of perception methods) as well as
it is responsible for the handling of conflict situations (e.g., contradictory perception method
outcomes).

The objective of this thesis is to implement an expert system control framework that uses top-
down attention methods in order to control the perception procedure of an autonomous robot
that performs everyday household activities. The control component of expert systems has to
deal with problems in the areas of acquisition, maintenance, reasoning, adaptability, consistency
and modularity [Gün92]. Furthermore, households are difficult environments because they are
complex, dynamic and knowledge about households and household activities may be uncertain.
These problems are discussed in section 2.1. The application domain of this thesis includes the
software that is used for the perception of the robot (RoboSherlock ) as well as the Personal
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Robot 2 (PR2). RoboSherlock provides a set of perception methods that can be used in the
kitchen domain for the PR2. The application domain is introduced in section 2.2. In section
2.3, the reference scenarios for the control framework are specified. Reference scenarios represent
particular situations in the application domain. They are used for the validation of the control
framework (see section 6). Finally, goals and requirements for the proposed framework are be
described in section 2.4.

2.1 Problem Statement

It is a challenging problem to use autonomous robots in real world environments like households.
Households are relatively good observable but robots might not be able to perceive everything
around them. For example, most robots have limited field of view and cannot see what is going
on behind them. In addition, household items may occlude a part of the scene as seen from
the perspective of the robot. Furthermore, households are stochastic because residents, pets or
ongoing processes can change the state of the environment and interfere with the current activity
of the robot. But the number of actors is relatively low in households compared to other domains
like the driving of cars on highways.

Everyday life involves actions in the kitchen including cooking of meals, setting of tables and
cleaning of dishes. We all have knowledge about kitchens, items that might occur in kitchens
and tasks that are performed in kitchens based on our everyday life. In the context of this
thesis, expert knowledge about the kitchen domain is important in order to be able to acquire
the knowledge that is used guide the perception of the PR2 (control knowledge).

Top-down attention systems are based on (uncertain) knowledge that is acquired by experts
or learning algorithms. Depending on the method of knowledge acquisition and the domain
coverage of knowledge different problems might occur. For this reason, a rough subdivision of
control knowledge is given below:

• Task Descriptions: Task descriptions may contain direct cues of regions, objects or features
that are particularly relevant for the task. For instance, the description could contain the cue
that the robot looks for a red, cup-shaped object on a table. Furthermore, task descriptions
restrict the domain to a particular activity.

• Common Sense: Universal knowledge about the application domain that is acquired by ex-
perts or learning algorithms. For example, knowledge about the average size of refrigerators
as well as the knowledge that crisper for vegetables can be part of refrigerators belongs to
this category.

• Experiences: Expert knowledge about the application domain that is acquired by learning
from a set of training samples. For example, knowledge about the common appearance of

8
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particular kitchen items such as milk packages belongs to this category.
• Instructions: Domain specific knowledge acquired by experts. For instance, knowledge about

the robot platform belongs to this category.

Acquisition of control knowledge is part of the control framework. The acquisition and mainte-
nance of control knowledge is usually supported by an user interface (the expert system shell)
that is dedicated to the acquisition (and application) of control knowledge. The representa-
tion of control knowledge in the user interface is an important factor for the acquisition and
maintainability of control knowledge. Problems that may occur for expert systems include the
modularity of the expert system, the adaptability to other scenarios and domains as well as
the explicability and adequacy of control decisions [Gün92]. For example, it is desirable that
(generic) parts of the control knowledge can be used for more then one tasks. Different parts
of the control knowledge should be independent from each other (modular) in order to support
re-usability and maintainability of the control knowledge.

In the following sections, the most relevant problems are discussed in more detail. These problems
are subdivided with respect to complexity and versatility of households (discussed in section
2.1.1), limited computational resources (discussed in section 2.1.2) and uncertainty of knowledge
(discussed in section 2.1.3).

2.1.1 Solution Space in Kitchens

The household domain requires methods that perform robust with regard to the complexity and
versatility of households and household items. The equipment of households depends on various
factors like individual preferences, cultural habits, regional habits, availability and budget. For
instance, kitchens in Japan are often equipped with an electric rice cooker. In Europe, rice
is usually cooked in a pot instead. In addition, the arrangement of furniture, appliances and
household items may vary between different kitchens and points in time.

For household activities, one of the most challenging variability in environmental conditions is the
illumination of the scene. Illumination influences the appearance of the scene in terms of color
and brightness of materials and it is usually not constant within a single room. The brightness
of light has influence on perceived material colors too. For instance, it is inadvisable for humans
to perform household tasks in complete darkness because it is hard to identify objects without
the ability to distinguish them by color. Rooms in households can be equipped with multiple
light sources with different colors and intensities. Furthermore, light emitted by local sources
usually extends within a few meters. Therefore, local light sources can result in complex color
and brightness patterns on appliances, furniture and items in household scenes.

Manifestations of appliances, furniture and household items may vary in material, size, shape and
functionality (intra-class variability). For instance, there is a high variability in manifestations
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of tables in kitchens. Most frequently wood tables with characteristic wood patterns or plastic
tables in arbitrary colors (often plain white) are used. The shape of the shelf space is usually a
simple geometric primitive like a rectangle or a circle. The size of tables primary depends on the
number of intended seats because each seat requires private space on the table dedicated to the
seat. Furthermore, tables may have special functionality like extendible elements for increasing
the shelf area.

For the control framework, the complexity of households leads to a large solution space: Each
possible specialization (e.g., finding out the color of an object) that is possible in a particular
situation belongs to the solution space of the problem (e.g., the set of all colors is the solution
space for the parametrization of object colors).

2.1.2 Limited Computational Resources

The household environment is a real world environment that is stochastic and dynamic. It is
desirable that robots can react in real-time on environmental changes such as suddenly appearing
obstacles. Real-time responses are only possible using sensors with real-time frame rates. The
amount of sensory data at real-time frame rates is often too high to be processed in detail.
The dimensionality of a sensory signal depends on the measured physical quantity and on the
resolution of the sensor. In the simplest case a sensor could represent the state of a switch with
a single bit. More complex sensors, like cameras, require much more memory for representing
the perceived state. For example, a camera with a resolution of 512x512 pixels where each pixel
is represented by 24 bits (1 byte for each color channel) requires 768 kB memory for representing
an uncompressed frame. Seen as a camera, without varying resolution in the field of vision, the
human eye would be able to vision about 576 million pixels [Cla05]. A camera representing as
many pixels would need roughly 1.6 GB of data to encode a single uncompressed frame. Sensor
resolution has influence on the computation time. Lower resolution leads to less computation
time because less data has to be processed. On the other hand, important details, small and
faraway objects could be missed if the sensor resolution is too low. Therefore, the resolution of
the sensors should be high enough to perceive details of the environment relevant to the current
activity while being low enough to be computational tractable in real-time.

The perception module is only one of many software components running on a mobile robot
and the main memory, the hard drive memory, the clock speed of processors and the number of
processors and cores is limited. For instance, the PR2 has two processors with four cores per
processor. This is a lot compared to modern personal computers but operations performed by
these processors can’t be arbitrary complex.

10



2.1. PROBLEM STATEMENT

2.1.3 Uncertainty in the Belief State

Mobile robots that act in kitchens have to maintain a virtual model of the environment (called
belief state) based on the history of perceptions and the sequence of previously performed actions.
Kitchens are stochastic and effects of actions could be predicted wrong by the robot. Thus, it
is required to continuously update the belief state in order to handle these unpredictable state
changes. The belief state is only an estimation of the real world state. Robots can usually only
perceive a fraction of a kitchen scene because they have limited field of view and because items
could be hidden in containers like drawers. Everything that was perceived by the robot in the
past may changed since the last time it was in the field of view of the robot. Furthermore,
the perception module has to estimate the state of the environment based on unstructured
data gathered from sensors. This estimation is aggravated by hardware limitations of the robot
(e.g., sensor noise, sensor resolution), high versatility of households (e.g., intra-class variability,
ignorance), the requirement to continuously update the belief state and uncertainty in general
knowledge. The control framework uses this uncertain knowledge about the current state of the
environment in order to make control decisions.

Control knowledge acquired by learning is used to make predictions in unknown environments.
Insufficient representation of the complexity and versatility of the domain in training samples can
result in wrong forecasts. The household domain is rather complex and the gathering of ground
truth training samples is sophisticated in real world environments. Additionally, the state of
the environment is continuous and discretization of continuous features might be required in
order to do reasoning with them. For instance, the discretization of object positions is relevant
for finding statistical correlations between different objects and their positions. The absolute
position of objects is not very expressive; it restricts correlations to a specific point in space. A
more expressive approach is to discretize positions by finding spatial relations to other objects
in the scene. For instance, silverware might be located next to dishes on many kitchen tables.
In the control framework, such knowledge about relationships between objects could be used to
infer likely locations of target objects.

2.1.4 Control Knowledge Acquisition and Maintenance

The acquisition and maintenance of control knowledge is an essential aspect of expert systems
that is done by so called knowledge engineers. Knowledge engineers must have expert knowl-
edge in the problem domain. In the kitchen domain, we all are experts. It is desirable that
control knowledge can be acquired without deeper knowledge about the control framework. De-
pendencies between aspects of the control knowledge may lead to inconsistencies in the control
knowledge (i.e., contradictions which may lead to the insolvability of the current task) and they

11
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Figure 2.3 PR2 looking at household items.

Source: http://pr2-looking-at-things.com

may lead to problems for the maintenance of control knowledge (i.e., high complexity due to
dependencies).

2.1.5 Adaptability to different Household Activities

The proposed control framework is intended to be a re-usable framework for various perception
tasks in households. Thus, it is required that the framework is adaptable to different scenarios
without modification of the source code. Furthermore, particular scenarios should be adaptable
to similar scenarios without the need to rewrite the entire control knowledge. For the reusability
of control knowledge, it is important that different aspects of the knowledge are independent
from each other (modularity). For example, a specific perception method could be needed in
order to recognize a spatula object. This knowledge can be applied to various household tasks,
which involve a spatula (independent from other control knowledge that is involved).

2.2 Application Domain

The application domain of this thesis can be divided as follows: The kitchen environment, the
robot platform, the perception software (RoboSherlock ) and the household activity. In this
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..
(a) PR2 looking in the fridge.

..
(b) PR2 looking on the kitchen table.

Figure 2.4 The field of view of PR2 in the reference kitchen.

thesis, the proposed control framework is evaluated using a PR2 that performs everyday tasks
in a reference kitchen. A discussion of the kitchen environment, the PR2, the RoboSherlock
software and kitchen activities is given in following sections.

2.2.1 Kitchen Environment

Households are complex and versatile environments (as discussed in section 2.1.1). Equipment
of households and arrangement of household items are influenced by factors such as individual
preferences, cultural factors and regional factors. Kitchens are primary used for cooking, prepar-
ing of food, dish washing and dining but are also commonly used for other household activities
including doing laundry and watching television. These tasks primary differ in actions needed
to accomplish the task and in the set of household items that might be involved. For example,
preparing breakfasts involves various appliances, silverware, dinnerware, tools and ingredients
that may be used during breakfast.

In this thesis, the household domain is restricted to a particular reference kitchen. The reference
kitchen is equipped with a table, a counter top, a refrigerator, a stove, a microwave oven, a
dishwasher, a sink with hot and cold water and cabinets for silverware, dinnerware, tools and
ingredients.

Silverware, dinnerware, tools and ingredients involved widely differ between cultures and regions.
For example, a traditional French breakfast primary includes sweet ingredients like strawberry
jam or cereals. Contrary, a German breakfast usually includes savory ingredients like sliced
cold meats. Typical silverware, dinnerware and tools on breakfast tables in Europe include

13
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various types of forks, spoons, knifes, dishes, bowls, glasses, cups and cases for ingredients. The
equipment of the reference kitchen reflects the capabilities of the PR2 (see section 2.2.2). The
set of kitchen items, which are used in this thesis, includes a pancake maker, a pancake tube, ice
tea packages, milk packages, corn flakes packages, ketchup bottles, cups and bowls. Figure 2.3
shows the selection of kitchen items and the point of view of the PR2 in the reference kitchen
can be seen on figure 2.4.

2.2.2 Robot Platform

A mobile robot has to be suitable equipped in order to be able to perform everyday household
tasks. The actuators of the robot must be accurate enough to grasp and carry household items
and the sensor resolution must be high enough to perceive household items, which are required
for mastering everyday household activities. In the scope of this thesis, the perception control
framework is evaluated with a PR2 (shown in figure 2.3). PR2 is a robotics research and devel-
opment platform developed by Willow Garage 1. The robot has a size and a radius of action
similar to humans and the platform includes two 7-DOF arms and 1-DOF parallel-jaw grippers,
an omnidirectional mobile base, two quad-core i7 Xeon processors, 24 GB main memory, 1.5
TB hard drive memory and a sensor suite including a depth camera, a 5 megapixel camera, an
inertial measurement unit (IMU), forearm cameras and gripper tip sensors.

The PR2 can carry items up to a weight of 1.8 kg. Big ingredient packages, large stacks of dishes
or chairs may be to heavy for the PR2 but most household items are light enough to be carried.
Moreover, objects can be too flat, too small or too large for the grippers due to mechanical
restrictions. These objects must be equipped with an additional handle that fits with the size of
the grippers in order for the robot to be able to grasp them.

2.2.3 RoboSherlock

The perception control framework uses an existing perception component that was used before
for the PR2 in the reference kitchen. The perception component is called RoboSherlock . RoboSh-
erlock consists of a set of methods dedicated to Unstructured Information Management (UIM) in
the context of robotic perception. In UIM systems, pieces of structured information are isolated
from the unstructured input data (i.e., sensory input) and a set of perception methods is used in
order to obtain information about the structured pieces. Furthermore, UIM systems use a type
system for the structured information pieces. In the scope of this thesis, the UIM types can be
mapped to the knowledge base that is used in the control procedure (i.e., the knowledge that

1http://www.willowgarage.com
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is represented by UIM types is also represented in the control knowledge base). This allows a
seamless integration of RoboSherlock with the control framework.

The set of perception methods in RoboSherlock is as follows:

• Color
Computes the dominant colors of an object (a color sequence sorted by dominance) based
on the color distribution in HSV (Hue-Saturation-Value) color space. Each computed color
can be one of blue, red, black, green, yellow or white.

• Size
The Size annotation roughly divides objects into small and big objects based on the maxi-
mum distance between points, which belong to the object. The distance is normalized with
respect to the distance to the camera (i.e., invariant for the visible scale of objects).

• Goggles
Google Goggles 2 is a web service that can be used to classify pictures as well it can be used to
find out text that is displayed on pictures. The Goggles method is able to send a particular
ROI to this web service in order to annotate recognized objects with the result of the service.

• FlatObject
Clustering of objects is done based on point clouds. Point clouds are 3D reconstructions of
the perceived depth. Flat objects with low variance in depth may remain unrecognized by
the 3D clustering algorithm. The FlatObject method is used to find additional objects in
color space (i.e., based on color contrast).

• PrimShape
The PrimShape is used to roughly classify the shape of objects into box and round. This is
done based on fitting primitive geometry (lines and circles) to the region that corresponds
to a particular cluster.

• LINE-MOD
Classification of objects can be done using the LINE-MOD [Hin+13] method (i.e., finding
out the object type). The LINE-MOD method requires a probabilistic model for kitchen
items. The model is used to estimate how likely it is that a particular region in the scene
corresponds to a particular object type.

• Location
The Location annotation maps positions of objects to semantic locations in the reference

2http://www.google.com/mobile/goggles
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Figure 2.5 Three steps in the decomposition of the task to lay a table for a cereal breakfast.

kitchen. The set of semantic locations in the reference kitchen includes the counter top,
the kitchen table, the fridge and drawers of the cabinet. A bounding box is associated to
semantic locations. It is used to filter all visible points that do not belong to the semantic
location (e.g., the filter keeps items on the table only if the kitchen table is the semantic
location of interest).

2.2.4 Household Activity

Many everyday activities can be performed in households. Setting breakfast tables is one of
them. In order to set a breakfast table, the robot has to be able to navigate in the kitchen, to
grasp, carry and place household items and to visually search for appliances, furniture, free spots
and household items. It’s essential to decompose the activity into several sub-activities in order
to break down high-level tasks like the preparation of breakfast tables to a sequence of actions
that can be performed by the robot. Such an incremental decomposition is called hierarchical
plan. The decomposition process is illustrated in figure 2.5. One approach for breakfasts is to
decompose by the category of household items on the first level of the plan. For instance, it may
make sense to put dinnerware on the table before silverware because it’s easier to find meaningful
positions for the silverware when dishes are already placed on the table. A lower level of the plan
includes tasks such as navigation to a cupboard, grasping of one item from the cupboard based
on a selection criterion, navigation to the breakfast table and placing of carried items on the
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(a) Ground plan of the reference kitchen.
..

(b) Photo of the reference kitchen.

Figure 2.6 The reference kitchen that is used in all reference scenarios.

table. The primary use of the perception module for this activity is to visually search for objects
based on a selection criterion and to observe regions of the scene, which are most relevant to the
hierarchical plan. For instance, the attention should be focused on the trajectory of the robot
and on objects that may collide with the robot during navigation.

2.3 Reference Scenarios

In order to show properties of the perception control framework, a set of reference scenarios is
defined in this section. Each scenario defines one explicit situation in the application domain
(see section 2.2) including occurring furniture, appliances, silverware, dinnerware, tools and
ingredients as well as the activity of the PR2 and the state of the environment.

In the kitchen domain, there are essentially three different activities of the robot with different
difficulties for the perception procedure: Object manipulation, navigation to a particular target
location and visual search. Object manipulation enables the robot to open and close cabinet
doors and drawers, to grasp household items and to place household items on the kitchen table
or the shelf space. Control knowledge can be used to guide the attentional focus during object
manipulation. The manipulated object is known in advance. The region between robot and object
is particular relevant during manipulation because the actuators of the robot could collide with
other objects. Furthermore, the manipulated object itself is particular relevant. It is recognized
in advance but the manipulation of the object can fail. This can yield in unpredictable changes
in object pose, which should not remain unnoticed by the perception module. Knowledge can
also be used to guide the attentional focus during navigation tasks. The target location is known
during navigation. The region between robot and target location is particular relevant because
the robot could collide with obstacles on the floor or moving objects. Furthermore, knowledge
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..
(a) The default scene

..
(b) The occlusion scene

..
(c) The cluttered scene

Figure 2.7 The reference scenes that are used for the validation of the perception control frame-
work.

about prospective tasks and target objects could be used during navigation in order to analyze
scene regions and objects, which might be task relevant in the near future. Nevertheless, visual
search is the most interesting activity for attention mechanisms and navigation and manipulation
tasks are not investigated any further in the scope of this thesis. For visual search, there are
two different scenarios that can occur when the robot visually searches for a kitchen item: The
presence of an object that satisfies the search query or the absence of such an object.

Other difficulties for the perception control framework occur due to difficult spatial configurations
of visible objects. Objects can occlude each other as seen from the point of view of the PR2.
The classification of occluded objects is difficult and perception methods may not work correctly.
Another difficulty for perception methods occurs when visible objects are too close to each
other. The point cloud clustering procedure does not work correctly in this case but image
based clustering can recognize both objects if they differentiate in color. Furthermore, small
and flat objects are difficult for the perception methods. The recognition of such objects requires
special perception methods and a control framework that is able to select the specialized methods
if required. Finally, a huge amount of visible objects leads to a huge solution space for the
perception control framework. This problem is subject of the control framework: The control
framework uses control knowledge to guide the perception of the PR2 using top-down attention
methods and other domain independent methods.

For each reference scenario, the same kitchen is used. The layout of this reference kitchen is shown
in figure 2.6. It is assumed that the robot knows this layout in advance and that the perception
control framework has access to this knowledge. Therefore, no identification of appliances is
needed for the reference scenarios. But the location of household items is not known in advance.
Ingredients, silverware and dinnerware can be located on the kitchen table, in the cabinet, under
the sink or on the shelf space on top of the cabinet. Each of the reference scenarios defines
a particular visual search task and the scene where the search task is performed. The set of
different scenes, which are used for the reference scenarios is shown in figure 2.7.
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A Searching for a Cornflakes Package in the Default Scene
This scenario represents the most basic situation that can occur for visual search tasks. The
PR2 stands in front of the kitchen table and looks onto the shelf space of the table. Multiple
objects are located on the shelf space. All objects are previously unknown and clearly visible
(i.e., with sufficient gap between them) from the point of view of the PR2. The search target
is an arbitrary cornflakes package (i.e., no special brand or variant) that is present on the
table. The set of distractor objects is as follows: An ice tea package, a pancake tube, a
hotplate and a spatula.

B Searching for a Labeled Cornflakes Package in the Default Scene
This scenario is identical to the first scenario except that additional knowledge about the
search target is available to the perception control framework. The Goggles annotation (see
section 2.2.3) is able to extract the visible text of the ROI that corresponds to a recognized
object. The text that is visible best on the corn flakes package in the default scene is the
label “CORN FLAKES”. This knowledge is represented in the task description in order to
investigate the influence of known annotations on the perception control framework.

C Searching for a Black Spatula in the Default Scene
In this scenario, the visual search target is the spatula that is clearly visible in the default
scene. Contrary to previous search targets, the spatula has a plain color. The black color
channel clearly dominates the appearance of the spatula. Furthermore, there is another
object visible with a dominant black color (the pancake maker). This ambiguity might dis-
tract the attention mechanism so that more operations are needed in order to fulfill the
search task. The Color Ratio annotation (see section 2.2.3) is able to extract information
about different color channels of the ROI that corresponds to a recognized object. This
knowledge of the black color of the spatula is roughly represented in the task description in
order to investigate the influence of known annotations on the perception control framework.

D Searching for a Partially Occluded Cornflakes Package in the Occlusion Scene
In previous scenarios, all considered objects are clearly visible. Partial occlusion of objects
and objects, which are close to each other may lead to difficulties because the perception
methods may not work reliably in such situations. In this scenario, the PR2 is looking
for the cornflakes package on the shelf space of the kitchen table. A cornflakes package is
present but it is partially occluded (from the point of view of the PR2) by an ice tea package.

E Searching for a Partially Occluded Cornflakes Package in the Cluttered Scene
In this scenario, the PR2 looks for a corn flakes package on the shelf space of the table.
There are 9 visible objects on the table including a corn flakes package which is partially
occluded by an ice tea package. This scenario has the objective to investigate the influence
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of the number of recognized objects on the perception control framework.

2.4 Objective and Requirements

The objective of this thesis is to adapt a particular expert system architecture for continuous
perception and methods of computational attention in the kitchen domain. Only knowledge-
based (top-down) attention is investigated (see section 3). The perception control framework
is responsible for the selection of objects, regions and features based on the outcomes of the
attention methods as well as it is responsible for the selection and configuration of perception
methods.
Top-down attention is usually based on knowledge about the current task. Thus, tasks play a
special role for the perception control framework and methods of computational attention must
be able to access the task information. Furthermore, it is required that tasks can be specified
dynamically in order to allow continuous perception with changing tasks.

Hayes-Roth [Hay85] defines the control problem as the problem to select actions in a problem
solving process. The definition can be transferred to perception control as follows: The perception
control problem is the problem to select and configure perception methods at each point in the
perception process.

Requirements of the perception control framework were identified based on problems that occur
in the application domain (discussed in section 2.1). Claimed requirements and objectives are
discussed in following paragraphs.

Expandability of the Control Framework The control framework that is implemented in
the scope of this thesis is designed for perception tasks in the household domain. It is desirable
that perception related components could be replaced to allow the expandability of the framework
to other domains (e.g., the manipulation of objects). Furthermore, it should be possible to add
new functionality to the framework without deeper knowledge about all control components.
Ideally, functionality of the framework should be represented by different interfaces, which allow
different implementations of the functionality (e.g., different rule formalism through a well defined
interface for rules).

Adaptability to Different Scenarios In the scope of this thesis, the perception control
framework is validated using a PR2 that performs everyday household tasks in a particular
reference kitchen. The perception control framework should be adaptable for other robots and
kitchens. This requires that the robot and the kitchen are only represented in the knowledge
base and in the control knowledge (i.e., no source code modification is required for adaption).
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Furthermore, it should be possible to use parts of the control knowledge in different contexts
(i.e., for different tasks).

Maintainability of Control Knowledge The modification and extension of the knowledge
base that is used by the control component may leads to inconsistencies in the control knowledge.
This is caused by an unclear structure of control knowledge where different types of knowledge
are mixed with each other. A clear user interface for the acquisition and maintenance of control
knowledge is required as well as the separation of different types of control knowledge.

Explicability of Control Decisions For the acquisition and maintainability of control knowl-
edge, it is important that knowledge engineers can understand the reason for particular (wrong)
control decisions. This allows identifying the part of the control knowledge that is responsible
for the particular decision. Furthermore, the explicability of control knowledge is important for
intelligent backtracking methods (i.e., backtracking where only decisions are taken back that
were based on the wrong decision).

Robustness with respect to the Versatility of Household Items One difficulty in the
household domain is that household items may appear in various sizes, shapes and colors and with
different textures. For example, the texture of ice tea packages is different for each manufacturer.
The control framework must be able to handle this versatility in manifestations of household
items.

Scalability with respect the Number of Visible Objects For each recognized object,
there is a set of control decisions that can be selected in order to specialize particular aspects of
the object (e.g., find out the color of the object). The main purpose of the perception control
framework is the selection of such decisions based on knowledge about the current task. Thus,
the number of possible control decisions is proportional to the number of recognized objects. The
control framework must be able to act in scenes with a realistic number of visible object with a
large number of possible control decisions.

Selection of Control Decisions The perception control framework uses computational at-
tention methods in order to select objects, regions and features of visible objects that should
be analyzed by perception methods. The usefulness of the attention methods can be estimated
by comparing the attention-based selection with a selection by random chance. The attention
methods are useful if the selection is better then by random chance.
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Chapter 3

Top-Down Attention Approaches

In this chapter, different approaches for knowledge-based attention models are discussed with
respect to the application domain (see section 2.2) and problems (see section 2.1) that might
occur in this domain. Thus, the focus in this chapter is on top-down attention models which
can perform in natural and dynamic environments. In most attention systems, only bottom-up
factors are investigated and saliency is computed based on the conspicuity of low-level image
features such as color, intensity and orientation. The input of such systems is usually a RGB
image and the saliency is computed separately for distinct rectangular image regions while the
relation of these regions with physical objects is ignored. In literature, top-down factors are
usually divided in knowledge about particular search targets (e.g., discriminative features), scene
context (e.g., the semantic category of the scene) and knowledge about the current task. Some
temporal models also considered knowledge about previous evidences (such as previous gaze
positions) in the attention mechanism.
A selection of such knowledge-based approaches is discussed in this chapter. The objective of this
discussion is to get an overview of the state-of-the-art in knowledge-based attention modeling in
order to be able to make a well-founded decision about the integration of attention methods into
the perception control framework.

The most intuitive way to integrate top-down factors in attention models is to enhance features
that distinguish a target object best from other objects in the scene as proposed by Wolfe, Cave,
and Franzel [WCF89]. This is illustrated in figure 3.1. For instance, every location with a
dominant red color could be enhanced when the search target is a red object. Some weighting
approaches inhibit the target-irrelevant regions while other approaches prefer to excite target-
relevant regions. This procedure is also called top-down weighting or top-down biasing.
In many other approaches, the semantic category of the scene is used to infer likely gaze positions
based on eye tracking training data. Such approaches often correlate the scene category to the
gaze positions with respect to the current task. Where the task is only coarsely associated
with a label (e.g., “grasping”). More elaborated approaches associate atoms from the task
description with objects known to the system based on relationships between objects and tasks
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Figure 3.1 Basic top-down biasing architecture. First, the input image is decomposed into mul-
tiple feature channels. From top to bottom, the feature maps correspond to RG,BY
color channels and intensity channel. The topographic conspicuity is then estimated
by a weighted linear combination of all feature responses.

(e.g., “grasping” correlates with small objects).
Many models used standard metrics for the evaluation. The most frequently used metrics are
introduced in following paragraph.

Evaluation Metrics One of the most used evaluation metrics for visual saliency is the Area
under the ROC curve (AUC) [TBG05] metric. It can be computed based on a comparison of
human eye fixation data (ground-truth) with the conspicuity that was estimated by the atten-
tion model. Using a threshold, the ground-truth fixations can be interpreted as a classification
into attended locations and unattended locations. This ground-truth about the eye fixations
of humans is used to find the true positive rate (recall) and the false positive rate (fall-out) of
the estimated conspicuity in the spatial domain. The Receiver Operating Characteristics (ROC)
curve is obtained by plotting the true positive rate against the false positive rate for different
classification thresholds. The area under this curve is defined as AUC. AUC = 1 indicates perfect
prediction while AUC = 0.5 indicates that the model does not perform better then by chance.
Another frequently used metric is the Normalized Scanpath Saliency (NSS) score [Pet+05]. NSS
is the average of normalized saliency over all locations which were fixated on the scanpath of a
human observer. For the normalization, each response is transformed to have zero mean and a
unit standard deviation. Let µS be the mean saliency, σS be the saliency variance and Si the
saliency at location i. Then, the NSS score can be written as: NSS = 1

N

∑N
i=1

Si−µS
σS

. Where
N is the number of fixated locations on the scanpath. NSS = 0 indicates that the model does
not perform better then by random chance because the average saliency over the scanpath is not
higher then the mean saliency over all locations. On the other hand, values greater then zero
indicate that the saliency for locations on the scanpath was higher then the average saliency over
all locations.
Furthermore, attention modules, which act as a part of a bigger system can be evaluated, based
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on the performance and quality of this system. For instance, attention modules that act as a
front-end for object-recognition can be evaluated in terms of recall, fall-out and speed of the
object-recognition process. This allows investigating the benefit of using an attention mecha-
nism for a particular application while the NSS and AUC scores can be used to compare different
attention approaches.
It is hard to compare the perception control procedure with other attention methods. Methods of
the perception component rely on the perceived depth and on knowledge about the environment.
Thus, a test set for the comparison of the perception control with other attention methods can
only include samples from the reference kitchen (see figure 2.6). It is not intended to create such
a test set that includes a reasonable amount of samples.

3.1 Cognitive Models

Most computational attention models have in common that they are inspired by psychological
and neurobiological concepts and theories of the human attention mechanism. Cognitive models
usually can’t be implemented directly on computers because they don’t provide enough algorith-
mic details of the attention process. Nevertheless, they serve as a basis for many knowledge-based
computational attention systems. For this reason, a brief overview of the most influential basic
concepts and architectures of attention systems is given in section 3.1.1.

For the computational branch, the most influential psychological theory is the Feature Integration
Theory [TG80]. It introduces the concept of saliency maps. A saliency map is a topographic map
that highlights scene regions which attract special attention (conspicuity). Most attention models
are designed for RGB images. In those models, the saliency is usually computed separately for
distinct regions in the image without knowledge about the physical object that corresponds to
the investigated region. Such models are called region-based or space-based. Contrary, models are
called object-based if the sensory input is segmented into multiple object representations before
the attention mechanism is involved. An object-based approach – Rensink’s triadic architecture
of attention – is introduced in section 3.1.1.
Saliency maps can be envisioned as gray-scale maps where brightness corresponds to conspicuity.
Saliency is often determined by the degree of difference to neighbor locations in a bottom-up
manner (e.g., by center-surround-differences [IKN98]). The center-surround operation can be
interpreted as contrast computation of feature responses in the spatial domain where locations
with high contrast correspond to high saliency. It can be computed as the difference of a (blurred)
feature map at different scales (across-scale difference). Center-surround features are usually
computed for low-level image features like color, orientation and intensity. Furthermore, several
other features had been used for the computation of bottom-up saliency including flicker, motion
and depth ([Dha03]; [MNE00]).
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Figure 3.2 Holistic scene characteristics using low-level features as proposed by Siagian and Itti
[SI07]. Feature maps are averaged in a fixed four-by-four grid and the dimensional-
ity of the final scene description is reduced using Principal Component Analysis or
Independent Component Analysis to obtain the final gist feature.

Knowledge about likely target appearance and feature responses only helps if the target object
actually differentiates from the background. For instance, a plain white cup on a white kitchen
table might not result in high saliency for the cup because the color feature responses are similar.
In an object-based approach, both objects could be differentiated based on high-level features
such as the size of the objects. Another approach is to use scene context knowledge or task
knowledge to infer interesting regions, objects and features. Using such knowledge, the saliency
does not necessary depend on local object features.

The semantic category of a scene can be defined at different levels of granularity. At a coarse level,
it can be used to distinguish between drastically different environments (e.g., indoor or outdoor
environments). It can also be used to distinguish scenes on a finer scale (e.g., in front of table or
in front of cupboard). Many attempts were made to dynamically compute a holistic scene feature
(also called gist) from low-level features which are also used for bottom-up saliency computation
and object recognition. For instance, Siagian and Itti [SI07] proposed a method to extract
holistic scene characteristics using low-level features obtained by center-surround differences.
They averaged the responses of different feature channels in a fixed four-by-four grid of sub-
regions over the maps. The gist vector over all feature channels (concatenation of all four-by-four
grids) has 544 values in their discussion. The authors used Principal Component Analysis and
Independent Component Analysis to reduce the dimensionality of the gist vector to 80 values
while preserving 97% of the variance in a set of 30,000 campus images. This approach of gist
vector computation is illustrated in figure 3.2.
Another approach for the computation of gist was presented by Renninger and Malik [RM04].
The authors proposed to extract so called universal textons from input images using an edge
detection filter (Gabor filter) and a clustering mechanism (K-means clustering). The gist vector
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is then defined as a histogram of those universal textons. The authors used the gist vector for
the classification of scenes based on a set of 10 basic categories including a category for kitchens,
bedrooms and bathrooms. Overall, they achieved 76% correct scene classifications with their
model using a test set of 750 images and a training set of 250 images (25 examples for each basic
category).

The computation of task relevancy of features, objects and regions is an important factor for
visual attention [Yar67] and it requires prior knowledge about entities that are referred in the
task description. Most authors interpreted the task as a label without semantic relationships to
objects in the scene. In such approaches, the saliency is computed with respect to the task label.
For instance, probabilistic models might use different density functions for different tasks in such
a case. More sophisticated object-based approaches could use relations between objects in the
scene and the current task to infer a saliency value with respect to the current task. For example,
only small objects are graspable and grasping involves the grippers of the robot. Such relations
can be used to infer a task relevancy value for regions, objects and features. Unfortunately,
approaches based on relational knowledge are rare. One interesting approach where the task
relevancy of objects is estimated based on pathfinding in a task graph is discussed in section
3.1.4.

3.1.1 Basic Theories and Architectures of Attention

The origin of all saliency map models is the Feature Integration Theory (FIT) that has been
introduced by Treisman and Gelade [TG80]. It was introduced in 1980 but it was adapted
constantly to reflect latest research findings. The original theory didn’t incorporate attentional
top-down factors explicitly. But many attentional top-down approaches are influenced by the
FIT (e.g., [Fri06]; [NI06]) and therefore it’s relevant in the scope of this thesis.
The theory suggests that attention is serially directed to different stimuli of interest whenever
multiple visual features are needed to differentiate between a search target and distractors. Fur-
thermore, the authors claimed that attention is a two stage process where functionally separable
primitive features (basic features) – such as color, orientation or intensity – are registered in
parallel in a first preattentive stage of the perceptual process and serially combined in a second
stage. The preattentive stage is inspired by physiological evidence which shows that receptors
respond selectively to basic features by mapping them to different regions in the human brain
[Pal99]. The information gathered about different features is represented in so called feature
maps. Feature maps are topographical maps that highlight the conspicuity of a particular fea-
ture in the scene.
Different feature maps are then combined into a single map, called the master map of location.
This map highlights the overall conspicuity in the spatial domain. In the second stage, the focus
of attention shifts between different scene regions by serially scanning through the master map.
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Figure 3.3 The stages of attention in the Guided Search model. The arrows indicate the inputs
and outputs of the stages.

The authors claimed that focus of attention is required to integrate the data from different fea-
ture maps into high-level representations of unitary objects or regions that are used by higher
perception tasks.

Guided Search Model The Guided Search Model (GS) is influenced by FIT but many aspects
of the attentional mechanism are specified in more detailed which makes the GS model more
suitable for the computational domain. The model also uses a preattentive stage where features
are registered in parallel in order to obtain separate feature maps. The authors proposed to use
one map for each considered feature type (e.g., one map for color and one map for orientation).
In addition to bottom-up factors, the model also considers top-down factors (called top-down
commands) in the preattentive stage. The separate feature maps are combined into a single
map, called the activation map. This map is used to focus the attention by finding peaks in the
map. This architecture is illustrated in figure 3.3.
In the GS model, top-down control of the attentional focus is accomplished by allowing to select
one categorical channel per feature based on knowledge about the current task demands. For
instance, the model allows to select the “red” channel of the color feature in a top-down manner.
It’s intended to select the channel that best differentiates the target from surrounding distractors.
This channel selection is accomplished using a set of hand-coded rules. For each feature, a top-
down feature map is computed that represents the discrete feature channel selection.
The purpose of the activation map is to direct the attention to locations in the scene where high
conspicuity indicates relevant regions, objects or features. Top-down and bottom-up feature maps
are combined in the activation map. This is accomplished by reducing the bottom-up feature
response strength for target features that appear multiple times in the scene. For instance, the
response strength of the color feature is reduced proportional to the number of distractors with
the same color as the target.
This is a basic approach for the extension of bottom-up attention models with a top-down
component. But the channel selection procedure as well as the representation of tasks is not
discussed by the authors. Furthermore, bottom-up attention is not investigated in this thesis.
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But the idea of channel selection based on task demands can be adapted by a knowledge-based
attention approach.

Triadic Architecture of Attention The triadic architecture of attention was introduced
by Rensink [Ren00]. The author proposed to decompose the attention mechanism in three
components.
In the first component, coarse representations of objects, groups of objects, or object parts –
called proto-objects – are obtained from low-level features in parallel without focused attention.
This component is similar to the preattentive stage of saliency map models.
The proto-objects are then refined to stable object representations using focused attention in a
second stage. The authors claimed that humans only need detailed description of a small number
of objects (usually one) and that focused attention is used to sequentially select proto-objects
for the computation of a more detailed representation.
The last component is used to guide the attentional focus using context knowledge such as
knowledge about the semantic category of the scene (e.g., indoor or outdoor) or the spatial
arrangement (layout) of objects. The author proposed that this knowledge can be used to prime
likely target objects by comparing the dynamically computed values to so called scene schemata
which are stored in long-term memory. This triadic architecture of attention is illustrated in
figure 3.4.

For object-based approaches, one of the most important differences compared to region-based
approaches is that objects must be represented separately before the attention mechanism is
involved. Thus, a segmentation algorithm is required in order to find different clusters which
correspond to different objects before the object-based attentional focus is computed. A saliency-
based approach for the segmentation of proto-objects in images was proposed by Walther and
Koch [WK06]. They used the peaks in pixel-level (region-based) saliency maps for the estimation
of proto-object extents.
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Recently, Yanulevskaya et al. [Yan+13] proposed a bottom-up attention model based on ideas
from the triadic architecture of attention. The authors proposed to estimate the saliency of
objects using rarity-based and contrast-based saliency. Contrast-based saliency is computed
based on the difference of feature responses of a proto-object to the responses of surrounding
regions and other proto-objects. The authors computed internal and external contrast-based
saliency. Internal contrast-based saliency reflects the variance of feature responses within proto-
objects (the visual complexity) and external contrast-based saliency reflects the variance between
different proto-objects. The authors proposed to compute the external contrast-based saliency
between proto-objects using the chi-square distance between the color histograms. Internal and
external contrast-based saliency are then averaged to obtain a result with respect to both modes.
The rarity-based saliency primes proto-objects with rare and outstanding details. This follows the
assumption that frequently occurring patterns are part of the scene background. The authors
proposed to represent images using a bag-of-visual words approach based on the responses of
Scale-Invariant Feature Transform (SIFT) [Low99] features. For rarity-based saliency, pixels
with rare visual words are considered as salient. Finally, a rarity-based saliency value per proto-
object is computed by averaging the rarity values over all pixels which belong to the proto-object.
The resulting rarity-based saliency is then summed with the contrast-based saliency to obtain a
saliency estimation per proto-object.
This theory suits well for the scope of this thesis. The model is object based (i.e., objects attract
attention) and RoboSherlock (see section 2.2.3) provides perception methods for the clustering of
proto-objects as well as it provides methods for the refinement of the recognized proto-objects.
Unfortunately, the author did not proposed how to incorporate top-down factors into the model.
Nevertheless, the idea of proto-objects can be adapted for knowledge-based attention approaches
where the refinement of proto-objects is driven by knowledge about the environment and the
problem-solving process (i.e., control knowledge).

3.1.2 SNR Maximization

A seminal approach for top-down biasing is to compute the optimal weights based on the signal-
to-noise ratio (SNR). SNR is the ratio of the strength of a target signal (e.g., the intensity
of color) over the noise from distractors. In this model, feature weights are usually used to sum
the saliency within feature dimensions as well as they are used to combine the saliency across
feature dimensions. Maximization of SNR leads to maximization of the object detection speed
and to optimal feature weights.
Several authors discussed this approach. For instance, Frintrop [Fri06] learned the weights based
on a set of manually annotated training scenes and based on a geometric mean computation.
Another approach was presented by Navalpakkam and Itti [NI06] where the maximization was
done based on differentiation of the ratio with respect to both feature weight levels (within and

30



3.1. COGNITIVE MODELS

across dimensions).

Both works proposed a model of combined bottom-up and top-down attention. Input images are
decomposed into multiple features (intensity (I), color (C), orientation (O)), different feature
channels per feature and each channel is represented at different scales using an image pyramid.
In [NI06], the feature channel maps are linearly combined using weights that maximize the SNR.
The resulting feature maps are linearly combined again to obtain the saliency map of combined
top-down and bottom-up influences. In [Fri06], the top-down computation is separated from
the bottom-up processing pass. In a first step, learned top-down weights are used to compute
an excitation map and an inhibition map. The excitation map represents regions with features
similar to the target and the inhibition map represents regions with features that are more present
in the background. The top-down map is obtained by point-wise subtraction of the inhibition
saliency from the excitation saliency. Finally, the top-down map is linearly combined with the
bottom-up map to obtain the saliency map.

Geometric Mean Approach Frintrop [Fri06] computes the weight ωi for feature i of target
object t by dividing the mean saliency in the target region by the mean saliency in the background
region for a set of N training images. The resulting weights are averaged over all training images
using the geometric mean of weights. Thus, the weight ωi for feature i can be written as:

ωi =
N

√√√√ N∏
j=1

SNRij =
N

√√√√ N∏
j=1

1
Tj

∑Tj

t=1 Sijt
1
Bj

∑Bj

b=1 Sijb
(3.1)

Where Tj , Bj are the numbers of target and background locations or objects in training image j
and Sijt,Sijb are the bottom-up feature responses for feature i in target and background regions
of training image j. The weight is high for features which yield in high saliency for the target
rather then the background. For instance, training samples with many colorful cups and plain
colored background yield in high weights for color features of cups.
In the testing phase, these weights are used to compute an excitation map for likely target feature
responses and an inhibition map for likely background feature responses. The top-down map
STD is then obtained by subtraction of the inhibition from the excitation responses:

STD =
K∑
i

ωiSi −
K∑
j

ω−1
j Sj | ∀ ωi > 1, ωj < 1 (3.2)

Where Sx is the bottom-up response of feature x and K is the number of bottom-up feature
maps (within and across feature dimensions). The top-down map is then linearly combined with
the bottom-up saliency map SBU to yield the final saliency map: S = (1.0 − γ)SBU + γSTD.
Where γ is an user defined factor between 0.0 and 1.0.

The author tested the model for visual search in more then 1000 real-world images where target
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objects occur in different context, with different distractors and with different colored and struc-
tured background. The results were compared for different values of γ (0.0, 0.5, 1.0) and it was
shown that the top-down influences improved the detection rate (i.e., the percentage of samples
where the target was found within a fixed number of steps) while the average hit number (i.e.,
the number of target fixations) was lower then without top-down factor (γ = 0).
One drawback of this approach is that strong responses of target features maximize the SNR
more then weak responses. As a result, gains of target features with weak feature responses
can’t be enhanced (e.g., the black color of a cup can not be enhanced if the color is discretized
in RGB color space). Also, the model doesn’t allow to incorporate other sources of knowledge,
such as knowledge about the task or relationships between objects in the scene. On the other
hand, this approach is easy to implement, can be integrated into an expert system architecture
(ordering knowledge) and the model showed good results in a real-time scenario similar to the
application domain investigated in this thesis (as a front-end for object recognition). Further-
more, the top-down component (i.e., the weight computation) can easily be used without the
bottom-up part which does not match the scope of this thesis. Finally, the attention model is
region based (i.e., spatial locations attract attention) but it can easily be adapted to an object
based approach where the features of different objects are compared with each other instead of
features at image regions.

Differential Approach In [NI06], the weights are applied between stages of the standard
bottom-up saliency computation process rather then separated from it. Let Sij be the saliency
that corresponds to feature i ∈ F = {I, C,O} and feature dimension j. Then, the saliency Si of
feature i is computed as linear combination across Ki feature dimensions using learned feature
weights ωij : Si =

∑Ki

j=1 ωijSij . Similarly, conspicuity maps are linearly combined across all
features using learned feature weights ωi. The resulting saliency S is computed as follows:

S =

F∑
i

ωi

Ki∑
j=1

ωijSij (3.3)

In the learning phase, the authors distinguished between expected target saliency St and expected
background saliency Sb across and within feature dimensions. SNR is then defined as the ratio
of St over Sb:

SNR =
St
Sb

=

∑F
i ωi

∑Ki

i=1 ωijSijt∑F
i ωi

∑Ki

i=1 ωijSijb
(3.4)

Sijt,Sijb are the bottom-up saliency responses of feature i at feature dimension j in target and
background region. In order to compute weights which maximize the SNR, the authors proposed
to differentiate with respect to ωi and ωij . This results in:

ωij =
SNRij

1
Ki

∑Ki

k=1 SNRik

; ωi =
SNRi

1
#F

∑F
n SNRn

(3.5)
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Where SNRij =
Sijt

Sijb
and SNRi =

Sit

Sib
.

The authors tested the model on natural scenes by training it on 10 images containing different
views of a cellphone and applying it to 50 other test scenes with slightly different backgrounds,
locations, views and sizes. They compared the results with a naive bottom-up approach and
showed that their model improved the object detection speed.
This model has the same drawbacks as the geometric mean approach: Low target feature re-
sponses can’t enhance saliency and other sources of knowledge can’t be integrated into this model.
But this model is more flexible then the geometric mean approach because weights are applied
at two levels of the SNR computation. The computation of top-down weights can be separated
from the bottom-up map and it can be integrated into the perception control framework using
ordering knowledge. The region based definition of the SNR can easily be adapted to an object
based attention approach as required in the context of this thesis.

3.1.3 Euclidean Distance Minimization

Borji, Ahmadabadi, and Araabi [BAA11] proposed an attention model that uses a global opti-
mization algorithm to find a weight vector with maximum detection rate and minimum processing
costs. The optimization for minimum processing costs makes this model particular useful in dy-
namic environments when limited resources are available for processing sensory stimuli. In their
model, weights are learned within and across feature dimensions. Additionally, weights for six
scales of feature pyramids are learned.

In the first step, input images are decomposed into intensity, color and orientation features with
multiple channels and at six scales (using Gaussian pyramids). A center-surround operation
is applied to the pyramids at all scales. This operation enhances features that discriminate a
location from surrounding locations. Afterwards, conspicuity maps within feature dimensions are
computed by normalizing and summing the weighted pyramid maps at different scales. Next,
these conspicuity maps are normalized, weighted and summed again to obtain one conspicuity
map per feature. Finally, the overall saliency map is computed as weighted sum of normalized
responses per feature.

To formalize this, the saliency Si of feature i ∈ {I, C,O} is computed using a weighted sum of
saliency responses Sij of different feature channels j ∈ {1, . . . ,Ki}, where Ki is the number of
channels of feature i. Each channel j is weighted by a learned factor ωij . The sum is normalized
using a nonlinear and iterative normalization operator N [IK01] which is used to enhance strong
responses while impairing weak responses (i.e., peaks are more evident after normalization). Sij
is computed similarly based on the bottom-up responses Sijk and the weighting factors ωijk over
the six different scales of feature i in channel j. Finally, the overall saliency S can be computed
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as:

S =

{I,C,O}∑
i

ωiN

 Ki∑
j=1

ωijN

(
6∑

k=1

ωijkSijk

) (3.6)

Where ωi is the weight of the feature with name i.
The authors proposed to learn the weights using a global optimization algorithm that finds
a trade-off between detection rate and processing costs. The resulting weight vector ω is a
concatenation of scale, feature channel and feature weights. In the optimization process, a
fitness value for each weight vector is computed. This is done based on a set of M training
images. For each training image Ii, the most salient position xi was manually specified by the
authors. The average euclidean distance between estimated most salient point X(Ii, ω) and xi

over all training images was used to define an optimization problem:

min
ω

1

M

M∑
i=1

∥X(Ii, ω)− xi∥ (3.7)

The authors solved this problem using the Comprehensive Learning Particle Swarm Optimizer
(CLPSO) [Lia+06]. To incorporate computational costs in the optimization process, the authors
manually specified a cost vector for different pyramid scales (based on image resolution) and
features (based on algorithmic complexity). The sum of costs is multiplied with the average
euclidean distance to obtain a fitness value that corresponds to detection rate and computational
costs. However, the selection of cost values for features is vague because the feature detection
complexity is not discussed in detail and the weighting between costs and average euclidean
distance in the heuristic is unclear.

The model was tested for pop-out tasks and object detection tasks in natural scenes for 5 different
objects (ten training images per object). The authors compared the experimental results to a
basic saliency model and reported that the detection rate is 8.4%−15.6% higher compared to the
basic model using the heuristic without cost factor while the detection rate is 0.0%−9.1% higher
using the heuristic with cost factor. Object were considered as detected if an attended point
was generated for a region of 30 pixels around xi within three fixations. The authors reported
the computational costs in terms of time it took to recognize an object. The recognition took
roughly 98 − 107 ± 13 milliseconds for their approach. They also reported that the bottom-up
approach was slightly slower compared to their approach when the cost factor was used.
The optimization problem is formulated generic and can be used for all region based attention
systems where ground-truth eye fixation data is available. For the reference kitchen, no such
ground-truth eye fixation data set exists. It is not intended to acquire such training data in the
scope of this thesis.In object based models, the distance between objects can be used instead of
the distance between regions (i.e., optimization of object fixations against the ground-truth eye
fixation training data).
Compared to previously discussed SNR approaches, the across-scale weighting gives a finer
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Figure 3.5 Task graph and task relevancy estimation proposed by Navalpakkam and Itti [NI05].
An initial task graph is expanded for the entities Man and Catch. The task relevancy
of the Table entity is estimated based on a path that connects the entity with the
task graph. In this example, Table is not task-relevant because hand related objects
must be small.

control over the top-down influences and the optimization heuristic allows to associate high
saliency to weak target feature responses (contrary to SNR approaches). However, this top-
down approach is rather tied to the bottom-up architecture. This makes it hard to extend this
model to other knowledge sources. Furthermore, the authors only tested the model on static
images but the performance evaluation indicates that their model is real-time capable.

3.1.4 Relational Task Graph

Navalpakkam and Itti [NI05] proposed to parse task descriptions using an ontology (i.e., a knowl-
edge base that contains prior knowledge about entities and their relationships) to yield task re-
lated entities and their relationships. Their ontologies are hand-coded symbolic knowledge bases
that encode knowledge about objects and actions. They are represented as graphs with entities
as vertices and relations as edges and they include relations such as is-a, includes, part-of, con-
tains, similar and related. Spatial relations are not used in the model. Furthermore, the authors
proposed to rank relations according to a priority value.
In this model, task keywords are expanded to task graphs that contain task-relevant entities and
their relations. Only task specifications in the form object, subject and action are supported.
The relevance of each keyword is manually defined by the user. Initially, the task graph only
contains task keywords and their relevance value. Then the graph is expanded along the is-a,
has-part and related relations. For each entity v, whose task relevance is unknown, a path in
the ontology is obtained that connects v with an entity u in the task graph. This architecture is
illustrated in figure 3.5.
The authors proposed to estimate the task relevancy of an entity v based on three factors: The
task relevancy of other entities u with relationships to v, the priority of relationships between
u and v and finally the probability of co-occurrence of both objects. Let r(u, v) be a relation
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between u and v. The priority function g(·) of this relation is then defined as g(r(u, v)). The
authors proposed to generally prefer some relations over others:

g(contains) > g(part-of)

g(is-a) > g(includes)

g(related) > g(similar)

(3.8)

Where the actual priority values were hand-selected by the authors.
Furthermore, let U be a random variable that denotes the presence or absence of an object u
and let V denote the presence or absence of an object v. The inheritance of relevancy along the
path is weighted based on the object co-occurrence: P(U=1 | V =1) = P(U=1, V =1)P(V =1)−1.
This heuristic prefers transitions between objects which appeared together often in training
samples. The authors proposed to estimate this probability by counting co-occurrence of objects
in training samples. Finally, the relevancy is decayed along the path using a user defined factor λ.
Altogether, the task relevancy Rv of entity v with respect to adjacent entities can be described
as:

Rv = max
u:∃r(u,v)

Rug(r(u, v))P(U=1 | V =1)λ (3.9)

Thus, the task relevancy of an entity is decayed by three factors: The transition costs g(·), the
object co-occurrence and an user defined factor λ.
The authors used a task-relevancy map that encodes the relevancy of scene entities based on the
task graph. Furthermore, they used a standard bottom-up attention approach that is biased
using likely target features (as discussed in section 3.1.2). Both maps are then combined by a
point-wise product to yield the so called attention guidance map.
Evaluation of multiple target detection was done by comparing the model with a naive bottom-
up model. Visual features of targets were learned based on 12 training images and tested on 28
new scenes containing fire hydrants and handicap signs. On average, their model was 6.2 times
faster then a naive bottom-up model. Furthermore, the authors compared their model with the
template-matching model proposed by Rao et al. [Rao+02]. The proposed model is slightly faster
in finding pop-outs but less efficient for conjunction search tasks.
The authors proposed a basic approach for the integration of relational knowledge in the atten-
tion mechanism. Unfortunate, many components were not implemented and many parameters
were manually defined by the authors. Additionally, the object, subject and action format of
tasks might not be a good fit for all household task (e.g., there is no object during navigation).
Nevertheless, it’s one of the only attention models with support for relationships between objects
and it’s possible to integrate other knowledge sources and other relations (such as spatial rela-
tions) into this model. Furthermore, it is possible to integrate this approach into the perception
control framework using ordering knowledge in order to prefer control decisions that relate to
the current task.
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3.2 Probabilistic Models

In probabilistic attention models, the problem to find a meaningful attentional focus in a scene
is formalized using a Probability Density Function (PDF). The underlying formalism of such
models is often based on Bayes’ rule (e.g., [Zha+08]; [IB09]). Bayes’ rule can be used to combine
sensory evidence with prior knowledge. For instance, it can be used to estimate the presence of
a particular object class based on local image features (such as SIFT features).
To formalize this, let C be a binary random variable that denotes the presence (C=1) or absence
(C = 0) of a particular target class. Furthermore, let F be a random variable that denotes a
visual feature and let f be the last feature measurement at a arbitrary location. According to
Bayes’ rule, the probability to find the target given the local feature measurement can be written
as:

P(C=1 | F=f) = P(F=f)−1P(F=f | C=1)P(C=1) (3.10)

The first term, P(F=f)−1 does not depend on the existence of any objects classes. It reflects
the conspicuity of the feature response f in a bottom-up manner (it’s often estimated using
a standard bottom-up attention model). The other terms depend on the target class, they
reflect the attentional top-down factors. The term P(C=1) is the target prior, it gives the
probability that the scene contains a target regardless of previous measurements. Finally, the
term P(F=f | C=1) indicates how likely it is to measure feature response f at locations where
the target object class is present. In principal, Bayesian frameworks can be formulated for
the prediction of both the next attended object (what) and the next attended spatial location
(where).

One of the most influential Bayesian models of visual attention – called SUN (Saliency Using
Natural statistics) – was proposed by Zhang et al. [Zha+08]. Bottom-up saliency emerges nat-
urally as self-information (novelty) of visual features in this model and top-down factors are
incorporated as a log-likelihood term in Bayes’ rule. In this model, novelty is defined based on
previous experiences, rather then on statistics of the current scene. The authors claimed that
the saliency is given by the conditional probability P(C | F , X), where X is a random variable
that denotes the attended location (e.g., the pixel coordinates). Using Bayes’ rule and assuming
that features and locations are independent, this probability can be written as:

P(C | F , X) = P(F)−1P(F | C)P(C | X) (3.11)

The most salient location can be computed by maximization of the PDF over all locations. The
estimation of probabilities is often based on normal distributions which include an exponential
factor. This factor makes it difficult to differentiate the PDF in order to find the most salient
location. For this reason, the log-probability is often used to eliminate the basis of the exponential
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factor. The log-saliency log (S) can be written as:

log (P(C | F , X)) = −log P(F) + log P(F | C) + log P(C | X) (3.12)

The log-saliency can be used because the mapped values remain in the interval [0, 1] (actually the
log maps to [0,-1] and the additive inverse of the log is often used to obtain positive values). The
term −log P(F) is called self-information of the random variable F . Self-information increases
with the probability of feature occurrence. This model reduces to the self-information term when
no search target is given (then, only bottom-up influences are considered). The log-likelihood
term log P(F | C) is used to prime feature values that are consistent with the knowledge about
features of the target. For instance, the log-likelihood is high for red colored locations when the
search target is a red cup. Finally, the third term log P(C | X) is used to prime likely target
locations independent of visual features (e.g., by spatial pooling). Both conditional probabilities
can easily be learned based on training images with annotated object classes and object locations
(natural statistics).

In the decision theory, attention is driven by optimality in regard to the end task (i.e., minimum
probability of error). For instance, Gao and Vasconcelos [GV04] introduced discriminant saliency
based on decision theoretic concepts. Saliency is interpreted as discriminant feature selection in
this model and computed based on local features of the target and distractors. The authors used
a decision-theoretic rule to avoid salient background features in the attention mechanism. This
approach is discussed in more detail in section 3.2.3.
Another approach is to maintain the conditional independence structure between random vari-
ables using a graph structure (graphical models). Graphical models treat the attention process
as a time series and use formalism that incorporate hidden variables such as Hidden Markov
Models (HMM), Dynamic Bayesian Networks (DBN) or Conditional Random Fields (CRF). In
graphical models, the saliency prediction is usually done with respect to previous gaze points or
attended objects. For example, graph-based visual saliency (GBVS) is a graph-based model. It
was introduced by Harel, Koch, and Perona [HKP07]. The authors used a fully connected graph
over all locations of feature maps. Edges between nodes are weighted based on similarity and
spatial distance and the resulting graph is interpreted as a Markov chain.
Finally, machine learning algorithms have been used to model the attention mechanism (pattern
classification models). This is usually accomplished by training a “stimuli-to-saliency” function
that is used to select, re-weight and integrate the input stimuli. For instance, Peters and Itti
[PI07] used a regression classifier in combination with global features in order to learn a task-
dependent association between gaze points and holistic scene representations. Their approach is
discussed in more detail in section 3.2.1.
Probabilistic attention approaches provide an extensible framework for top-down attention. The
basic approach is based on a Bayes’ rule where a Bayes’ classifier is used in order to estimate the
probability that a feature measurement belongs to a particular target class. Other evidences –
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such as high level object features – can be integrated into this model. Furthermore, it is possible
to handle continuous features with Bayesian models using a normal distribution function. Thus,
features such as the color of kitchen items must not be discretized in order to find statistical
correlations. Many authors use the gaze position (i.e., the eye fixation position) as evidence
in the probabilistic model (region based attention). This is not suitable for the context of this
thesis because only object based attention is investigated. Nevertheless, it is possible to adapt
this feature for object based approaches where the feature represents the fixated object instead
of the fixated region.

3.2.1 Gist Projection Matrix

Peters and Itti [PI07] proposed a model of combined bottom-up and top-down attention that
uses a statistical association between the gist of a scene and gaze locations in the context of
video games. The bottom-up component is a standard model – based on [IKN98] – that com-
putes saliency based on center-surround differences of visual features such as intensity, color,
orientation and motion. The authors tested their model with two different gist representations:
A pyramid-feature (spatial domain) representation with 448 elements per feature based on the
mean and variance of center-surround differences at multiple scales (shown in figure 3.2) and
a Fourier-feature (frequency domain) representation with 384 elements per feature based on
different orientations and spatial frequencies in the image (as proposed by [Tor03]).

In this model, input images are passed to the bottom-up and top-down component in parallel.
The bottom-up component computes a saliency map based on center surround-differences of
features while the top-down map is computed based on a mapping of the scene gist to gaze
locations. In the top-down component, the scene gist feature is dynamically computed each
frame. This vector is then used to estimate a gaze position prediction map (i.e., with high
values for likely gaze positions) based on a learned mapping from gist features to gaze locations.
Finally, top-down and bottom-up maps are combined by point-wise multiplication to yield the
final saliency map.

In this model, a projection between gist features and gaze points is learned in a training phase
using a set of training images. For each training image, ground truth about the gaze points was
collected using an eye tracking device. A coarse 20 × 15 grid is used to segment the scene into
different regions and the number of eye fixations is counted for each grid cell. This yields in
a 300-element gaze vector (density map) for each of the K training images. Furthermore, the
gist vector is computed for each of the training images based on the gist approaches of [SI07] or
[Tor03]. Let xkn correspond to the element with index n of gaze vector xk, where k ∈ {1, . . . ,K},
n ∈ {1, . . . , N} and N = 300. Furthermore, let fkm correspond to the element with index m

of gist vector fk, where m ∈ {1, . . . ,M} and M is the dimension of the gist vectors. Then, the
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sequence of gist vectors (K ×M matrix F ) and the sequence of gaze vectors (K ×N matrix X)
which were obtained from K training samples can be written as:

F =


f11 . . . fK1

...
...

f1M . . . fKM

 ; X =


x11 . . . xK1

...
...

x1N . . . xKN

 (3.13)

Both matrices are associated with each other using a M × N matrix W , where X = FW . W
defines a projection from gist vectors to gaze density vectors. The objective in the learning
phase is to estimate W based on the K training samples. If the inverse of F is defined, W can
be estimated from: W = F−1X. The authors used a more general approach to compute W
based on the pseudo inverse F+ of the gist matrix. It’s called pseudo inverse because it does not
share all properties of the matrix inverse in all cases. The computation of matrix W based on
the pseudo inverse is given by: W = F+X.
The pseudo inverse can be estimated by F+ = (FTF )−1FT in case of linear independence
between columns (gist vectors) in F (because the inverse is then defined). This equation is usually
not solved directly due to numerical instability in computing the inverse. Instead, singular value
decomposition (SVD) is widely used for the computation of the pseudo inverse. The SVD of the
gist matrix yields in following factorization: F = UΣV T . Where U, V are orthogonal matrices
(i.e., multiplication with transpose gives identity) and Σ is a diagonal matrix of non-negative
real numbers (i.e., multiplication with pseudo inverse Σ+ gives identity). The pseudo inverse can
then be expressed in terms of SVD as follows:

X = UΣV TW ⇐⇒ W = V Σ+UTX

= F+X
(3.14)

Finally, the learned matrix W can be used to estimate the gaze density x given a gist feature f
where x = fW . The estimated gaze vector is then mapped to a 20× 15 grid over the visual field
in order to obtain the top-down map.

The authors tested their model across 192,000 self-recorded video frames. They compared the
predicted eye positions with tracked eye positions using the NSS score. The authors showed that
the top-down mechanism outperforms standard bottom-up mechanisms and that a combination
of both approaches yields in best results. The NSS score was roughly doubled compared to a
standard bottom-up mechanism (from 0.58±0.08 to roughly 1.2±0.10). Furthermore, the model
performed better then a simple heuristic that used the mean position of eye tracking samples.
Additionally, they showed that the Fourier-feature gist representation performed slightly better
then the pyramid-based representation.
In the context of this thesis, one of the major drawbacks of this approach is that it’s limited
to the processing of low-level image features. The authors did not proposed how object-based
features – such as relations between objects – can be integrated into their model which is required
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in the context of this thesis. Furthermore, the model does not support fast online learning – the
projection matrix must be recomputed for every new training sample. Furthermore, the model
is region based and it is not obvious how to adapt this approach for object based attention.

3.2.2 Feature Prior for Target Classification

Elazary and Itti [EI10] proposed a probabilistic approach for top-down biasing using a Bayesian
framework in combination with a basic saliency model. The saliency map is computed based
on a set of topographical probability maps (one for each feature channel). A high value in a
probability map indicates high probability for that location to contain a target object.
The authors claimed that the saliency map that’s generated by their model can be used to find
more robust feature sets and key-point locations for object recognition then wide-spread ap-
proaches like SIFT- or HMAX-based recognition ([Low99]; [SWP05]). Furthermore, the authors
claimed that their model speeds up the recognition process compared to those methods.

In the proposed attention mechanism, input images are decomposed into color, intensity and
orientation channels with two, one and four channels respectively. For each channel, an image
pyramid is computed and center-surround operations are applied to the resulting pyramids at
different scales to obtain multiple conspicuity maps for each channel. These maps are used to
sample a PDF that corresponds to the probability of a particular feature channel response to
belong to the target object. Contributions from different scales are multiplied to obtain one
probability map per feature channel. The saliency map is then computed by multiplication of
all probability maps.

Let the random variable F = (F1, . . . ,FK) denote the continuous feature measurements from K

different maps. The random variable Fk denotes the feature response of a particular feature map
with index k ∈ {1, . . . ,K}. For a particular target class c and feature channel k, parameters µck

and σck for the probability estimation are learned in advance. µck represents the mean feature
channel response and σck the standard deviation around the mean over all training samples.
The learned parameters are used to estimate the probability to measure feature response Fk at
target objects: P(Fk | C). The authors used the Gaussian Distribution (GD) for the probability
estimation:

P(Fk=fk | C=c) ∝ GD(fk, µck, σck)

=
1

σck
√
2π

exp
(
− (fk − µck)

2

2σck2

) (3.15)

GD was chosen for its simplicity and efficiency in obtaining the parameters µck and σck in
an on-line method from training images. The probability is distributed symmetrically and de-
scending about the mean µck (bell-shaped) where the width of the “bell” is controlled by the
standard deviation σck. Thus, it’s assumed that P(Fk=µck + ϵ | C) = P(Fk=µck − ϵ | C) and
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P(Fk=µck + ϵ1 | C) > P(Fk=µck + ϵ2 | C) if |ϵ1| < |ϵ2|.
The saliency Sc with respect to a particular target object c is expressed using above PDF over
all feature maps: P(F | C=c). The authors assumed conditional independence between feature
channels given the target class (Fi ⊥⊥ Fj | C). Thus, P(F | C=c) =

∏K
k P(Fk | C=c). This is

certainly not true (e.g., correlations between intensity and color) but the authors claimed that
the dependence between features would increase the accuracy only by a small amount. As in
many other models, the log of the probability is used to allow easier maximization of the PDF.
Above discussion yields in:

Sc = log P(F | C=c) = log

K∏
k=1

P(Fk | C=c)

=
K∑

k=1

log P(Fk | C=c)

(3.16)

The authors used this saliency estimation for a Bayes’ classifier in order to find the most likely
object class C given the local feature measurements:

C = arg max
c

P(C=c | F) (3.17)

Where the feature prior was dropped because it’s the same for all object classes. Thus, it can be
interpreted as constant without influence on the classification problem.

The authors claimed that their model of combined attention and recognition is robust to changes
in transformation (i.e., position and scale) and illumination of objects. Furthermore, they claimed
that the recognition performance is on par or better than SIFT- and HMAX-based recognition
while the computational costs are significant reduced. The model was tested across three popu-
lar data-sets (ALOI [GBS05], COIL [NNM96], SOIL-47 [BAK]) that include 87,810 photographs
(scaled to 256× 256 pixels) of more then 1000 objects under various transformations and illumi-
nations. According to the authors, the average detection rate over all data-sets – using 25% of
the data-sets as training images – is 88.64% for the proposed model, 84.78% for the SIFT ap-
proach and 72.77% for the HMAX approach. Furthermore, their approach (3.42h) was roughly
1500 times faster then SIFT (4878.3h) and 279 times faster then HMAX (678.55h) for one half of
the ALOI data-set (40,000 images). On average, the classification for a single image took 0.165

seconds for their approach.
The reported performance improvement is impressive and the recognition rate of their Bayes’
classifier is on par with the state-of-the-art in object recognition. The performance evaluation
indicates that the model is real-time capable but the authors did not tested it for dynamic
scenes. One advantage over previously discussed methods is that the learned parameters of the
GD (mean and variance) can easily be updated from online samples without interfering with
parameters of other features. On the other hand, the model only uses knowledge about char-
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acteristics of a single search target while knowledge about the scene, relations between objects
and the current activity is ignored. Furthermore, the model misses some statistical correlations
due to independence assumption between features. The authors reported that the accuracy is
only improved by a small amount when dependence between features is assumed. Since the
authors used natural images for the validation of their model this might hold true for the kitchen
domain as well. Finally, the GD is symmetric about the mean over all training samples which is
unfavorable for features with high variance such as the color of cups.

3.2.3 Mutual Information of Evidences and Target Class

In [GHV09], the authors defined top-down saliency with respect to a one-versus-all classification
problem: Target features correspond to a single object class of interest and background features
correspond to the rest of the scene. Similar to the approach discussed in section 3.2.2, the
model estimates the likelihood of feature responses given that the location belongs to the target
or background. But the estimation is done using a more general distribution function: The
Generalized Gaussian Distribution (GGD). The learning problem reduces to the learning of the
parameters of the distribution function per feature channel. Another difference is that this model
additionally learns a selection of discriminative target features. Uninformative target features
are ignored in the testing phase. Finally, the authors proposed a saliency measure based on the
Kullback-Leibler (KL) divergence between the likelihood term and the feature prior. The KL
divergence is used to estimate if a particular feature response is characteristic for the target class.

Let the random variable F = (F1, . . . ,FK) denote the continuous feature measurements from
K different maps. The likelihood P(Fk | C= i) of feature Fk with k ∈ {1, . . . ,K} given that
the location belongs to the target (C = 1) or background (C = 0) is estimated using a GGD.
The GGD estimation depends on three parameters: The mean feature response µik, the scale
parameter αik and the shape parameter βik. αik is proportional to the standard deviation σik but
it also depends on the shape parameter. The shape parameter is a measure of the “peakedness”
of the distribution: The distribution has sharp and long peaks for high values while low values
yield in round and short peaks. This probability estimation can be written as:

P(Fk=fk | C= i) ∝ GGD(fk, µik, αik, βik)

=
βik

2αikΓ(β
−1
ik )

exp
(
− (fk − µik)

βik

αβik

ik

)
(3.18)

Where Γ(z+1) =
∫∞
0
tze−tdt is the gamma function. It can be interpreted as factorial extended

for floating point numbers. This is evident when the function is rewritten using partial integra-
tion: Γ(z + 1) = [−tze−t]∞0 + z

∫∞
0
tz−1e−tdt = zΓ(z). The shape parameter βik = 1 controls

the decay of the peak. For instance, Gaussian normal distributions can be achieved with βik = 2
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(since Γ(12 ) =
√
π). For βik = 1 the gamma function yields in Γ( 11 ) = 0! = 1 while it goes to

infinity for growing values of βik.
The authors proposed to use the method of moments for the estimation of scale and shape pa-
rameters. The shape parameter βik is estimated from the kurtosis κik = Γ( 1

βik
)Γ( 5

βik
)Γ( 3

βik
)−2.

And the scale parameter αik is estimated from the standard deviation and shape parameter:
σ2
ik = α2

ikΓ(
3

βik
)Γ( 1

βik
)−1. For βik = 2 this yields in σ2

ik = α2
ik(

1
2

√
π)(
√
π)

−1
= 1

2α
2
ik. Standard

deviation, mean and kurtosis can be acquired from training samples and updated online when
new samples are available.
In the information theory, the information content of a random variable is expressed in terms of
Shannon entropy. The entropy can be interpreted as average information gain for the observation
of a particular random variable: The entropy is maximal if all the outcomes of the variable are
equally likely and it’s minimal (zero) if all future outcomes are known in advance. The authors
proposed to use the entropy as a selection criterion for discriminative target features. A feature
Fk is discarded if the entropy of Fk given the background class label is higher then the entropy
given the target class label (i.e., if the feature is more present in the background). The selection
test can be written as:

E(Fk | C=1) ≤ E(Fk | C=0) (3.19)

The authors referenced that the entropy of feature Fk can be directly estimated from the learned
GGD parameters: E(Fk | C= i) = 1

βik
+ log

(
2αikΓ(β

−1
ik )

βik

)
.

Additionally, a decision rule for feature selection based on the concept of mutual information
was proposed. Mutual information measures the amount of information that one particular
random variable contains about another one. It’s zero between independent variables, while it’s
high for variables with strong dependencies. In this model, the mutual information between
features and class labels is used to select features with strong dependencies to the target and
background class. The mutual information between a feature Fk and the class labels can be
written as: I(Fk;C). Fk is considered more informative about the target then another feature
Fm if I(Fk;C) > I(Fm;C) holds true. The estimation of the mutual information is done using
the KL divergence:

I(Fk;C) =
∑
i

P(C= i) KL [P(Fk | C= i)||P(Fk)] (3.20)

Where KL [P(Fk | C= i)||P(Fk)] =
∫
x
P(Fk=x | C= i) log

P(Fk=x | C= i)
P(Fk)

measures the difference
between feature prior and feature likelihood given the class label. A large difference indicates
strong dependence between class label and feature while a difference of zero indicates indepen-
dence between the distributions. The authors also referenced a closed form of the KL divergence
based on learned GGD parameters.
Finally, the saliency Sk with respect to feature Fk is defined as the mutual information between
class labels and feature response fk. All features Fj that are more likely for the background
class are ignored (Sj = 0). The saliency S is then defined as sum of saliency responses over K
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selected features:

S =
K∑

k=1

Sk ; Sk =

I(C;Fk=fk) if k ∈ A

0 otherwise
(3.21)

Where A = {k | P(Fk=fk | C=1) > P(Fk=fk | C=0)} is a selection set of more likely target fea-
tures given the feature responses.

The authors used precision-recall curves to measure the localization accuracy of salient points
against the bounding boxes of target objects on images from the PASCAL2006 data set [Eve+].
They compared the model with 3 other classification approaches (discriminative visual words
[CZ07], linear support vector machine [JT05] and probabilistic latent semantic analysis [Siv+05])
and showed that the average precision over all object classes was at least 15% higher for their
model.
Furthermore, the authors evaluated the classification performance by comparing their approach
to a bottom-up model. They claimed that, for all object classes, their approach pruned away
at least 30% of all points of interest according to the bottom-up model and that the savings in
computational time are proportional to this value.
Summarizing, the GGD based probability estimation is more flexible then the GD based proba-
bility estimation because the additional shape parameter controls the “peakedness” of the GGD.
The GGD parameters (mean, variance, scale and shape) can be updated in an online learning
method but with higher computational cost due to additional parameters for the probability
distributions. Another advantage of this model is that the saliency computation is restricted to
informative target features while features and particular feature responses which are more likely
for the background are ignored in the saliency computation. The knowledge involved is restricted
to features which are informative for a particular target, other sources of knowledge are ignored
(e.g., relations between objects).

3.2.4 Contextual Priors for High-Level Object Features

Torralba [Tor03] proposed an attention model which incorporates the global scene structure based
on a probabilistic model over the statistical correlations between the gist of a scene and other
random variables (including local object features, object class, gaze point and object properties).
Their model can be used to predict the presence or absence of objects as well as their location,
scale and appearance (e.g., scale, pose). In the proposed model, top-down and bottom-up com-
putation is done on separate paths. On the bottom-up path, a conspicuity map is computed
based on the likeliness of local feature measurements (i.e., large saliency for unlikely feature
responses). Feature responses used for the computation of the bottom-up map are also used for
the computation of the gist feature. The gist feature is computed based on different orientations
and spatial frequencies in the image (Fourier-feature). This gist vector is then used to estimate
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likely target positions using a Bayesian framework. Finally, the top-down and bottom-up map
are linearly combined to yield the saliency map.

The basic approach of Bayesian saliency models is to estimate the likelihood of object class C
given local feature measurements F : P(C | F). This approach can trivially be extended to gist
features by concatenation of local features and gist feature. However, this would lead to high
dimensionality of feature vectors (which might yield in slow estimation of the PDF). In the
proposed model, two sets of image features are used instead: Local image features FL obtained
by center surround mechanisms and contextual image features FC that represent the gist of the
scene. The gist is represented with 60 elements per feature based on different orientations and
spatial frequencies in the image. Furthermore, the author augmented the PDF by introducing a
random variable X that denotes the position of objects and a random variable T that denotes
the appearance of objects. Where the appearance is expressed as a vector of object scale and
aspect ratio. Let O = (C,X, T ) be a random variable that denotes an object. Using Bayes’ rule,
the probability of objects given local and contextual features can be written as:

P(O | FL,FC) = P(FL | FC)
−1P(FL | O,FC)P(O | FC) (3.22)

The first term can be interpreted as bottom-up saliency. It gives the probability to perceive
particular low-level features within scene context FC (large PDF values indicate uninteresting
features). The PDF P(FL | O,FC) is the likelihood of the local measurement FL given the pres-
ence of object O in scene context FC . Thus, it gives high values for features which are likely for
a particular object. In their discussion, the authors ignored this term and simplified the PDF
to: P(O | FL,FC) = P(FL | FC)−1P(O | FC). Finally, the last term P(O | FG) gives the probabil-
ity of object O to occur in scene context FC (contextual priors). The author decomposed the
contextual priors in three factors based on the proposed object representation:

P(O | FC) = P(T | X,C,FC)P(X | C,FC)P(C | FC) (3.23)

These density functions represent the contextual selection of target appearances, positions and
object classes.
The author proposed to use a mixture of K = 2 Multivariate Gaussian Distribution (MGD)
weighted by learned factors α for the estimation of the density functions. Multivariate Gaussian
distributions are parametrized by the mean vector µ of training samples and the covariance of
different elements in the training vectors (covariance matrix Σ). The covariance covij of vector
elements i, j is computed as average of the statistical error of i multiplied by the statistical error
of j over N training samples: covij = 1

N

∑N
k=1(xik−µi)(xjk−µj). Where xik, xjk are the values

of vector element i, j for training sample k. In this approach, each dimension of the training
vectors is considered to be a random variable. Mean and covariance are learned for all contextual
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priors. For instance, the contextual class prior is estimated from:

P(FC =fk | C=c) ∝
K∑
i=1

αciMGD(fk, µci,Σci)

=
K∑
i=1

αci

(2π)K/2|Σci|1/2
exp

(
−1

2
∆2

) (3.24)

Where |Σci| is the determinant of Σci and αci is the learned weight of the i’th Gaussian function
in the mixture. The weights are chosen so that they sum up to 1 over all Gaussian functions.
The exponent ∆2 = (fk − µci)

TΣ−1
ci (fk − µci) is the squared Mahalanobis distance between fk

and µci. It provides a measure of distance between the gist vector fk and the mean vector µci of
the distribution with respect to the covariances in the distribution. Low distance yields in high
probability. The distance reduces to euclidean distance if the covariance matrix is a diagonal
matrix.
The log-likelihood function of mixture densities is hard to optimize (due to the log of the sum).
Thus, the authors proposed to learn the distribution parameters based on the expectation–
maximization (EM) algorithm. Initially, the EM algorithm chooses random values for the pa-
rameters of Gaussian functions in the mixture. In the expectation step, the current parameters
of the distribution (e.g., initially random parameters) are used to estimate the “membership
weight” wcik of each training sample fk and cluster i:

wcik = αciMGD(fk, µci,Σci)

 L∑
j=1

αcjMGD(fk, µcj ,Σcj)

−1

(3.25)

The membership weight of sample k in cluster i is high if the normal distribution of the cluster
yields a higher probability for the sample then other clusters. In the maximization step, the
membership weights are used to update all parameters of the Gaussian functions. Let wci =∑N

k=1 wcik the sum of membership weights of cluster i. The weight of each cluster i is computed
as average membership weight over all training samples: α

′

ci = N−1wci. The mean of the
distribution is then computed as sum of weighted training samples normalized by the membership
weight of the cluster: µ′

ci = w−1
ci

∑N
k=1 wcikfk. Finally, the covariance matrix is updated using

the standard covariance formula except that the contribution of each training sample is weighted
by the membership weight: Σ′

ci = w−1
ci

∑N
k=1 wcik(fk−µ

′

ci)(fk−µ
′

ci)
T . This procedure is repeated

multiple times until the EM algorithm converges.

The performance of this model depends on how well the gist feature differentiates scenes, on
the relationship between objects and scene (object priming) and on the spatial distribution of
objects (location priming). The model was tested using 2700 greyscale images (color feature was
ignored by authors) with annotated object classes, locations and scales. Half of the images was
used for testing and the other half was used for training. The authors reported that their model
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correctly predicted the presence or absence of search targets in 81% of all test images (object-
class priming). Furthermore, the authors compared the actual mean scale of target objects H
with the scale prediction and showed that the prediction was in the interval [0.5H, 2H] for 84%
of the test images.
This attention model combines an object based and a region based attention approach. It
incorporates high-level object features such as size and scale and it allows to extend the object
definition in order to incorporate other high-level features which is required in the context of
this thesis. Furthermore, no independence between object features and contextual features is
assumed which allows object feature priors with respect to the current context (e.g., the current
activity). In their discussion, the authors ignored the priming of likely target features but the
approach can easily be extended to support this (e.g., using the approach discussed in section
3.2.2 or 3.2.3).

3.3 Conclusion and Discussion

In existing attention models, top-down factors are often integrated into a standard bottom-
up attention architecture. Most of the discussed methods focus on knowledge about low-level
features of the current task target (e.g., knowledge about the color of task targets). High level
object features and relations between objects are rarely investigated.
The attention models are often used to predict the next eye fixation based on ground-truth eye
fixation data that was gathered using an eye tracking device. In some attention models, the gaze
position is associated to the semantic category of the scene (gist) in order to predict the next
fixation in dependence of the semantic category of the scene.
Finally, most discussed approaches are region based (i.e., image locations attract attention) which
is not in the scope of this thesis. But the adaption of the top-down components in region based
models into an object based architecture is possible for the set of discussed attention models.

The priming of likely target features (see [Fri06], [NI06] and [BAA11]) is often done using
top-down biasing where feature responses are biased using learned weights. The discussed ap-
proaches build on top of standard bottom-up attention architectures. The subject of this thesis
is knowledge-based attention (i.e., top-down attention). Bottom-up aspects are not investigated.
Thus, the architectures do not fit well with the scope of this thesis. Nevertheless, it is possible to
adapt the top-down components of the discussed architectures for the perception control frame-
work.
The top-down biasing methods do not work for situations such as navigation where no explicit
target is known to the system. But the methods work for visual search tasks which are the
most important perception tasks (e.g., it is only possible to grasp something that was recognized
earlier).
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Frintrop [Fri06] proposed to maximize the SNR (signal-to-noise ratio) in order to find search
target specific weights for object features (see in section 3.1.2). One drawback of this approach
is that low feature responses of target features cannot yield in high saliency responses. This
problem does not occur for the euclidean distance minimization approach (see section 3.1.3) that
was proposed by Borji, Ahmadabadi, and Araabi [BAA11]. Nevertheless, the euclidean distance
minimization approach requires ground-truth eye fixation data which is not available for the
reference kitchen and not intended to be acquired in the scope of this thesis. Thus, only the
SNR approach can be investigated in the scope of this thesis.

The holistic scene representation (gist; see [Tor03], [RM04] and [SI07]) is primary used for a scene
classification purpose. In the application domain of this thesis, it is assumed that the attention
mechanism has access to knowledge about the current pose of the robot in the kitchen. For
instance, it is known if the robot stands in front of the table or the cupboard. But, for instance,
the set of items and their distribution on the table is unknown. It is not clear how well the gist
representation performs for such an application because most authors used it for classification
on a coarser level.

Only a few attempts exist that incorporate knowledge about relations of task and scene entities.
The relational task graph approach that was proposed by Navalpakkam and Itti [NI05] is one of
them (see section 3.1.4). Unfortunately, the authors used many user defined factors in the atten-
tion process and the definition of tasks was bound to a syntactical structure (object, subject and
action) that does not fit with all activities that can be performed in kitchens (e.g., navigation).
Nevertheless, the idea that task relevance can be estimated from the relation hierarchy of objects
can be adapted for the perception control framework.

Models of attention which are based on Bayes’ rule provide a generic framework that can easily
be augmented by different types of knowledge. These models are often based on the classification
of low-level feature responses (see [Zha+08] and [IB09]). For example, Elazary and Itti [EI10]
proposed a basic probabilistic model of attention where only low-level features of the target class
are used (see section 3.2.2). One disadvantage of this approach is that the saliency of a feature
response only depends on the probability distribution of the target class while the correlations
to other objects in the scene are ignored. For instance, Gao, Han, and Vasconcelos [GHV09]
used the mutual information between feature prior and feature likelihood in order to enhance
the saliency for features which are more characteristic for the target object class then for other
object classes (section 3.2.3).
Torralba [Tor03] proposed a probabilistic attention model that uses multiple types of evidences:
Low-level image features, the semantic category of the scene and a set of high-level object features
such as size, shape and location (section 3.2.4). The authors used the semantic category of the
scene for rough scene categorization (e.g., indoor or outdoor scene). This is not required for
perception control in the kitchen domain because the semantic category of kitchens is always
the same. The authors used the position feature for spatial pooling (i.e., high saliency for likely
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target regions). RoboSherlock already provides methods for spatial pooling based on the currently
investigated semantic location in the kitchen (e.g., the counter top of the table). Thus, a position
feature for spatial pooling is not required for the perception control framework. Nevertheless,
Torralba [Tor03] showed how to incorporate multiple evidences in a Bayesian attention model
including high-level object features which are relevant in the scope of this thesis (i.e., size and
shape).
In probabilistic attention models, normal distributions – such as the GD – are usually used
for the probability estimation of continuous features. The parameters of these functions are
learned in a training phase based on a set of annotated training images. Torralba [Tor03] used
a mixture (weighted sum) of MGD for continuous features (see section 3.2.4). In this approach,
the probability is not necessary symmetric about the mean of training samples which might be
a good representation for the versatility in the household domain (e.g., the variance in color of
different cups). Elazary and Itti [EI10] used a simple GD for the representation of probability
densities of continuous features. In the GD distribution, the density is symmetric about the mean
of all training samples which is unfavorable for features with high variance. Nevertheless, the
parameters can be computed at lower computational cost then the parameters of the MGD and
many existing machine learning frameworks support this distribution for continuous features.
The parameters of both distributions can be updated in an online learning methods.
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Chapter 4

Perception Control in the Kitchen Domain

The objective of this thesis is to adapt a particular expert system architecture (PLAKON [CG91])
for the context of perception in the kitchen domain. Furthermore, it is intended to integrate a
selection of computational attention methods (discussed in section 3) into the expert system
architecture. There is a rich set of methods for the computational attention research topic,
but most of these methods focus on feature based attention without knowledge about objects
or relations between them. Usually, the methods of computational attention describe how the
conspicuity of features, regions or objects can be estimated. To the best of my knowledge,
there was no attempt made yet to integrate these methods into a well defined expert system
architecture. Another objective of thesis is to interface with an existing perception component
that is based on the Unstructured Information Management Architecture (UIMA). In UIMA,
methods of the perception components are called analysis engines, which are modules that can
be loaded dynamically. The analysis engines that are most relevant in the context of this thesis
are discussed in section 2.2.3. The sequence of executed analysis engines can be specified using
a UIMA component that is called flow controller. In order to interface with UIMA, a special
flow controller is designed that uses the control mechanism internally. The existing perception
component includes analysis engines for clustering of RGB-D input frames and for computation
of annotations for clusters. The purpose of the control procedure is to dynamically select and
configure the analysis engines that will be executed in the UIMA process. The selection is based
on control knowledge and results of computational attention methods.

PLAKON (see [CG91]) is an expert system designed for planning and configuration problems in
technical domains. The ontology-based control component of PLAKON (see [Gün92]) intends
to solve and relax many problems that might occur in rule based control components: The
mixture of different types of knowledge and the large number of rules might lead to problems
in the areas of acquisition, maintenance, reasoning, adaptability, consistency and modularity
[Gün92]. Following is a list of essential features that were claimed for the ontology-based control
component of PLAKON:

• Strict separation of different types of knowledge (ordering, focusing, processing and conflict
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resolving knowledge)
• Declarative representation of control knowledge
• Explicit control decisions (particular relevant for backtracking and reasoning methods)
• Modular architecture

The basic idea of the ontology-based control in PLAKON is that model concepts in the ontol-
ogy can be used to represent prototypical descriptions of object classes. Dynamic instantiations
of such classes must be compatible with the model concept description in the ontology. Each
operation that can be performed by the ontology-based control of PLAKON corresponds to a
specialization of a prototypical part of the model concept description. For example, the special-
ization of a numeric range to a specific number maps the prototypical range to a discrete value.
The selection of the next specialization operation that should be performed belongs to the tasks
of the ontology-based control component (ordering knowledge). The selection of the processing
methods that should be used to execute the operation is separated from the selection of the
next operation because it belongs to a different category of control knowledge (processing knowl-
edge). Additionally, the ontology-based control supports to ignore particular operations, objects,
attributes or relations entirely (focusing knowledge). The ontology-based control of PLAKON
also supports constraints between entities: The specialization of one entity can have influence
on possible specializations of other entities. For example, a milk package should not be a part of
the breakfast setting if it is empty. Such restrictions can be expressed by constraints. Conflict
situations are handled in PLAKON using conflict resolving rules and different backtracking tech-
niques (including a truth maintenance system). The backtracking is used because the control
component may made wrong decisions based on false assumptions.

The architectural concept that is presented in this chapter is based on the ontology-based con-
trol of PLAKON. The most essential aspects were adapted for the control of perception in the
kitchen domain. Some other aspects were not adapted because they are beyond of the scope of
this thesis (e.g., constraint network, truth maintenance system). Rules are used as a replace-
ment for the constraint network in this control framework. They have the advantage of better
performance then constraint networks while being less expressive (multidirectional constraints
vs. unidirectional rules). In PLAKON, conflict situations occur when the control component
tries to correct a previous decision. This is important for planning and configuration in many
technical domains because the construction may fail entirely if some decisions were made on
false assumptions. For perception control, there are usually weaker relations between the char-
acteristics of objects. Thus, backtracking is not necessarily required for perception control. In
this chapter, the differences to the original ontology-based control of PLAKON, the integration
of computational attention methods as well as the integration of perception methods and the
interface between the control component and the perception component are discussed.

In the following section, I will discuss the ontology formalism that was used in the context of
this thesis as well as I will give a description of how the kitchen domain for the perception
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control procedure is modeled (see section 4.1). The control procedure is continuous, a central
main loop is executed at regular intervals until the procedure terminates. This control main
loop is discussed in section 4.2. Tasks need special treatment because they have influence on the
relevance of entities for the perception procedure. It must be possible to overwrite and manipulate
the current task in order to support continuous perception. The representation of tasks in the
proposed control procedure is introduced in section 4.3. The core of the control mechanism
is build upon a set of control strategies, which contain the control knowledge that should be
used in particular situations. The dynamic activation (selection) of strategies is discussed in
section 4.4. Each strategy covers different types of control knowledge: Focusing knowledge that
is used to blank out particular aspects (see section 4.4.1), ordering knowledge that is used for
the sequencing of the process (see section 4.4.2) and processing knowledge that is used for the
selection and configuration of analysis engines and other processing methods.

4.1 Kitchen Domain Ontology for Perception Procedures

The control procedure that is proposed in this thesis is driven by the definition of model concepts
in an ontology. The ontology formalism and implementation used in this thesis (see [Lan14]) is
based on a diploma thesis that was written simultaneously to this thesis at the same research
institution (artificial intelligence institution of the University Bremen 1). In this section, I will
give a brief formal definition of the ontology formalism as well as I will present the most important
aspects of the hand coded kitchen domain ontology that was used in the scope of this thesis.

4.1.1 Ontology Formalism

In general, ontologies are used to represent knowledge about things, their attributes and relations
to other things. Model concepts are prototypical descriptions of object classes. Each concept
includes a set of attributes where each prototypical value represents the value domain of the
particular attribute. For example, the value domain of an attribute position that corresponds
to a spatial location is a 3 dimensional vector of float values. Furthermore, the model concept
description contains knowledge about relations to other concepts. For instance, the type hierarchy
is represented with a relation (is-a relation). The type hierarchy is important in particular
because attributes and relations are inherited along the type hierarchy. The root of the type
hierarchy is a common base concept Object. Any other model concept must be a child concept
of the Object concept in the type hierarchy. Figure 4.1 illustrates a basic type hierarchy for the
kitchen domain.
1http://ai.uni-bremen.de/
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Figure 4.1 A basic type hierarchy of model concepts in the kitchen domain. All model con-
cepts are child concepts of the common base concept Object. For example Spoon is-a
KitchenThing is-a Object.

To formalize this, let CO be the set of model concepts in ontology O. The relation mapping
r : CO → C∗

O can be used to map a model concept to related model concepts with respect
to the relation r. In the following, let RO = {CO → C∗

O} be the set of relation mappings
that are defined in ontology O. Finally, attributes can be defined analogous using the mapping
a : CO → Da that maps a concept to the attribute domain Da with respect to attribute a. The
domain represents the prototypical attribute value that is defined in the model concept. In the
following, let AO = {CO → Da} be the set of attribute mappings which are defined in ontology
O.
Based on above discussion, the ontology O can then be written as:

O = (CO, RO, AO) (4.1)

Let c ∈ CO be a model concept. There is always a sequence of model concepts c0 . . . cn with
c0 . . . cn ∈ CO, c = c0, cn = Object and ci is-a ci+1 because Object is the common base concept
in the type hierarchy.

Instantiations of model concepts are called model instances. They inherit the domains of at-
tributes and relations from the instantiated model concept (model instances are mapped instead
of model concepts). In the following, let IO be the set of dynamic instantiations of model concepts
in ontology O and let c : IO → CO be the mapping from model instance to the corresponding
model concept. The basic idea of the ontology-based control, that was proposed by Günter
[Gün92], is that a comparison of dynamic instances with their corresponding model concepts
can be used to find unspecified aspects of the entities. Operations that can be performed on
model instances are used to specialize the particular instance in order to represent a smaller
subset of the object class according to the model concept definition in the ontology. These op-
erations are called agenda items in the context of ontology-based control. They are collected in
a data structure that is called agenda (see sections 4.4.1, 4.4.2 and 4.4.3 for more details on this
data structure). The area of responsibility of the control procedure includes management of the
agenda, selection of items from the agenda, selection of agenda item processing methods and the
execution of the operations based on the selection of processing methods.
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Name Inverse Reflexive Transitive Agenda Property
is-a is-a-inv 1 1 0 0
is-a-inv is-a 0 0 0 0
contains contained-in 0 0 1 0
contained-in contains 0 0 0 0
location-of located-at 0 0 0 0
located-at location-of 0 0 1 0
annotation-of has-annotation 0 0 0 0
has-annotation annotation-of 0 0 1 1

Figure 4.2 Relations that are used in the kitchen domain ontology for the control of the percep-
tion procedure. For each reflexive relation rel, a rel a holds true for all entities. For
each transitive relation rel, a rel b ∧ b rel c → a rel c holds true for all entities. The
Agenda flag is used to tag relations that should be processed by the control compo-
nent by dynamically relating entities to each other. Finally, the Property flag tags
relations that are supposed to be used to augment the attributes of entities.

4.1.2 Ontology for Perception in Kitchens

The kitchen domain is highly versatile and the set of characteristic items depends on the culture
and other factors (see section 2.2.1). It is beyond the scope of this thesis to model all possible
kitchens that could appear in European households. It is sufficient to model kitchen items
that occur in one of the reference scenarios which were defined in section 2.3 in order to show
that the proposed control mechanism fulfills the requirements that were defined in section 2.4.
Furthermore, the ontology has to model annotation types of the perception component: Results
of perception methods must be reflected in the ontology in order to be able to use the results in
the control procedure.

A relation definition consists of a relation name and a set of boolean properties. The semantic of
relations is not important to the control procedure (except for the type hierarchy relation). New
relations can be introduced without modification of the source code. The type hierarchy relation
– the is-a relation – has some special properties like the inheritance of attributes and relation
descriptors along the type hierarchy. In the scope of this thesis, containment is expressed using
the contains relation and the location of kitchen items is expressed using the location-of relation.
Furthermore, relations can be flagged to be property relations. Property relations are used to
attach augmentations to model instances. This fits well with the concept of annotations in the
perception component: Annotations are attached to recognized objects in order to augment the
set of object properties. In the kitchen domain ontology, annotations are attached to kitchen
items using the has-annotation relation. Another relation property determines if agenda items
should be generated for the particular relation if it is underspecified. The set of relations that I
used in the scope of this thesis is shown in figure 4.2.

In the perception component, unstructured sensory input data is analyzed in order to find and
identify visible objects. This clustering procedure is based on low-level features of the sensory
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Figure 4.3 Relation hierarchy and attributes of the Item model concept. The item class is the
base class for all kitchen items that might occur in one of the test scenarios (see
section 2.3). The model concept is dynamically instantiated based on the result of a
clustering method.

signal (e.g., the perceived depth). This procedure is driven by model concepts in the context
of the proposed control architecture. In the context of this thesis, a special concept Frame
is used to initiate the segmentation procedure. The objective of the clustering phase is to
instantiate the Item concept for each recognized object. Each Item instance corresponds to
a cluster that was recognized by the perception component. The clustering is initiated by the
relation Frame contains Item. Agenda items are generated for this operation because the Agenda
flag is set to true for the contains relation (see figure 4.2). Annotations are attached to the Item
concept using the has-annotation relation. The parametrization of Annotation concepts initiates
perception methods of the perception component in order to obtain the attribute value for
a particular attribute and model instance. Finally, the spatial location of recognized kitchen
objects is represented using the located-at relation. The perception methods are capable to
automatically specify this relation for recognized objects by using a region filter that cuts out
all points outside of a region that corresponds to a semantic location. As an illustration, the
relation hierarchy and attributes of the Item concept are shown in figure 4.3.

Specializations of the Item concept inherit the relations to the annotation concepts from the
definition of the Item concept. Generally, model concepts can restrict the inherited relations
by specification of attribute specializations of related concepts. In the case of annotations, it
is hard to define such specializations because kitchen items can appear in many manifestations
with different color, shape and size. Thus, related annotations are usually not restricted by Item
concept specializations. In the scope of this thesis, there are model concepts defined for each
kitchen item that occurs in one of the test scenarios (see section 2.3).

Annotations are used to augment the properties of Item concept instantiations. They correspond
to methods of the perception component (see section 2.2.3). The annotations which were used
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in the context of this thesis are listed below:

• Geometry
The Geometry annotation contains a ’shape’ attribute (one of flat, box, round or cylinder)
that represents the rough geometric shape of the object and a ’size’ attribute (one of small,
medium or large) that represents the rough size of the object (according to the author of the
perception method who determined which actual sizes correspond to which size category).
This annotation model concept corresponds to the perception methods Cluster3DAnnotator
and PrimitiveShapeAnnotator.

• SemanticColor
This annotation is used to represent the dominant color of an object. The dominant color is
represented by a color attribute (a prioritized list that can contain following constants: blue,
yellow, red, green, white and black). Additionally, this annotation contains an attribute for
the color histogram of the object. The corresponding perception method is the ClusterCol-
orHistogramCalculator.

• Goggles
The Goggles annotation represents the result of a Google Goggles 2 query (the perception
method reverse engineered the Goggles communication protocol because there is no public
API). The color information of the visible region that corresponds to a particular object is
transmitted to the Goggles service in order to retrieve information about the visible object.
The result of the query contains string attributes for the category and the title of the object
which is visible in the cluster region according to Google Goggles. The ClusterGogglesAnno-
tator perception method corresponds to this annotation concept.

• LinemodDetection
The LinemodDetection annotation contains a string attribute that represents the class label
of the object and a numeric attribute that represents the confidence that this particular
objects belongs to the class that is specified in the class label attribute. This annotation
corresponds to the LinemodAnnotator perception method.

Finally, a set of furniture objects is represented in the kitchen domain ontology. Furniture objects
specify a bounding box that is used to filter away other scene regions. The filtering is done by
the perception method URDFRegionFilter. In the scope of this thesis, the only furniture that is
investigated is the kitchen table (Table concept) in the reference kitchen (see section 2.3).

2http://www.google.com/mobile/goggles
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4.2 The Perception Control Loop

In this section, I will give a description of the control main loop that is executed in order to
successively specialize different aspects of the set of instantiated model concepts. This procedure
is based on the control main loop that was used in the control procedure of PLAKON (see
[Gün92]). In the following description, I will focus on the differences of my approach to the
procedure that was proposed by Günter [Gün92].

The initial setup is done based on following steps:

(a) Instantiation of Known Entities
In the scope of this thesis, the furniture that occurs in kitchens is expected to be completely
specified in advance. Thus, attributes of the table, the fridge and other furniture objects
are known in advance. The corresponding model concepts are instantiated and specialized
in this step. This has to be done only once in the initialization step. No such mechanism
exists in PLAKON.

(b) Instantiation of Task Entities
Tasks are defined slightly different in the proposed control procedure: They can contain
multiple independent task entities as well as relations between referenced entities (which is
not allowed in PLAKON). PLAKON allows dynamic augmentation of the task, but it is not
possible to change the target object dynamically. In PLAKON, a so called task question
agenda processing method is used for the task augmentation. The task definition agenda
processing method in this control procedure additionally allows to add and remove task
entities dynamically (see section 4.3).

The proposed control loop consists of following steps:

1. Activation of Loop Rules
Loop rules are rules that belong to the ‘loop‘ rule group. They can have arbitrary conditions
and consequences. This rule group is activated at the beginning of each control loop and
multiple rules are allowed to fire for each activation of the rule group. The control procedure
in PLAKON does not use such a rule group.

2. Selection of Active Phase
Usually control tasks can be segmented into distinct phases where different control knowl-
edge is required for different phases. As in PLAKON, the selection of the active phase is
done using control rules. Only the activated rule with highest priority fires in this step. In
the proposed procedure, all phase activation rules must belong to the rule group ‘strategy‘
that is dedicated to the selection of strategies (see section 4.4).
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3. Agenda Generation
The agenda is generated by comparison of model instances with concept definitions in the
ontology. Agenda items are generated for underspecified aspects of the instances (i.e., un-
specified attributes, relations, specializable type). As in PLAKON, agenda focus methods
(see section 4.4.1) and agenda ordering methods (see section 4.4.2) can be used to exclude
and sort agenda items. I introduce hierarchical agendas: A root agenda is used that contains
all generated agenda items and child agendas that inherit the set of items from the parent
agenda. This is done in order to allow different components to process different aspects of
the agenda in parallel.

4. Selection of Agenda Items
The selection of agenda items is done identical to the approach in PLAKON: A prioritized
sequence of selection criteria is used to sort the agenda and the agenda item with highest
priority is selected. In this step, unique agenda items are automatically processed and in-
valid items are dropped from the agenda. Agenda items are invalid if none of the control
methods was able to execute the corresponding operation. The selection of agenda items is
discussed in more detail in section 4.4.2.

5. Selection of Agenda Item Processing Methods
In PLAKON, the selection of agenda item processing methods is done based on a prioritized
list of selection methods that is attached to the control knowledge of phases. The methods
are executed in the priority order until a method yields in a consistent result for the opera-
tion of the selected agenda item. I propose an augmentation of this selection mechanism that
is based on agenda item patterns. In this procedure, multiple prioritized sequences of pro-
cessing methods can be attached to the control knowledge of a phase. Agenda item patterns
are used to select which one of the declared sequences should be activated (see section 4.4.3).

6. Processing of Agenda Items
In the context of ontology-based control, processing of agenda items corresponds to the spe-
cialization of model instances based on model concept definitions from an ontology. This
includes the specialization of instance concepts, specialization of instance attributes and
the relations to other instances. In the proposed control mechanism, the selected sequence
of processing functions is always processed completely. Methods can process the selected
agenda item, an arbitrary other agenda item or none of the generated items at all. Addition-
ally, the perception application domain requires a special set of agenda processing methods
which allow parametrization and invocation of perception methods which are used in the
perception process. The agenda processing methods are described in more detail in section
4.4.3.
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4.3 Ontology-Based Task Representation

The control procedure must be capable to represent different tasks that are required in the
kitchen domain. For instance, the robot may have to visually find a red cup on top of a specific
table in the kitchen. In the proposed procedure, the task description TO is an underspecified
instantiation of model concepts declared in ontology O. TO consists of following aspects:

• Task Entities
Model instances that are targets of the current task are called task entities. Task entities
t ∈ ITO

⊆ IO are instantiations of model concepts in ontology O that are referenced by
task description TO. Let CTO

be the set of model concepts that are referenced in the task
description. A task entity t ∈ ITO

is instantiated for each concept c ∈ CTO
. For example,

when a concept Cup is referenced in TO, then a task entity tCup ∈ ITO
is instantiated with

c(tCup) = Cup, where c maps a model instance to the corresponding model concept.

• Task Entity Relations
Task entity relations are used to specify relations between instances in ITO

. A relation
between model instances of ITO

can be interpreted as a (named) mapping r : ITO
→ I∗TO

that maps a task entity to related instances according to relation r. For example, the
red cup relates to the kitchen table using the located-ar relation. In the following, let
RTO

=
{
ITO
→ I∗TO

}
be the set of relations declared in task description TO.

• Task Entity Attributes
Task entity attributes are used to specify attribute values for task entities. Attributes of
model instances in ITO

can be interpreted as a (named) mapping a : ITO
→ Da that maps

a task entity to the attribute value domain Da. The attribute domain of a is defined in
ontology O. For instance, the red color of the target cup is represented in the task de-
scription by an attribute specialization (the dominant color is set to red). In this case, the
attribute domain is a selection set of pre-defined color constants (red, green, blue, …). In the
following, let ATO

= {ITO
→ Da} be the set of attribute specializations that are declared in

task description TO.

Formally, the task description can be represented by following equation:

TO = (ITO
, RTO

, ATO
) (4.2)

Contrary to the control procedure in PLAKON where the subject is to specify one particular
task entity, the task description of the proposed control procedure can contain multiple task
targets. For example, multiple targets for visual search can be specified in the task description.
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Figure 4.4 Example relation hierarchy for task entities. Task0 is the model instance of the Task
concept. All other instances that are related to the task instance are task entities.
In this example, IceTea0 and Table0 are task entities because Task0 contains IceTea0
and Task0 contains Table0.

Furthermore, the task entities must not be related to each other in the decomposition hierarchy,
but they are usually related to each other using spatial relations (e.g., both items are on top of
the same table). Furthermore, the task description can reference externally specified instances.
In above example, the table might be externally specified in advance because the attributes
of the table might not change for different tasks. Finally, the proposed task representation is
augmented compared to the PLAKON procedure by the possibility to specify relations between
task entities.

In order to expose the information which instances in IO are task entities to other control
methods, the proposed control procedure uses a special task concept ctask ∈ CO. The control
procedure instantiates this task concept once. The task instance itask ∈ IO with c(itask) = ctask

is used to tag task entities as referenced in the task description. This is done by relating the task
instance itask with all task entities in ITO

using the contains relation: ITO
= contains(itask).

This relation can also be expressed with the inverse relation contained-in:

itask ∈ contained-in(t) ∀ t ∈ ITO
(4.3)

61



CHAPTER 4. PERCEPTION CONTROL IN THE KITCHEN DOMAIN

4.4 Control Knowledge for Perception Procedures

Strategies represent the control knowledge that is used in the proposed control procedure. The
perception process can be segmented into different phases where different entities, attributes and
relations are relevant for the perception process. In the scope of this thesis, the following set of
phases are used:

• Input-Phase
In this phase, a sensory frame is written into the data store that is used by the perception
component. Initially, the raw sensory data (RGB image and a point cloud) is filtered based
on the semantic location of interest in this situation. In the next step, a clustering method
is used in order to find and identify visible objects.

• Annotation-Phase
The annotation of recognized objects is done in this phase. This includes the decomposi-
tion of property relations. For the control procedure, the annotation procedure consists of
two steps: Execution of a perception method and the mapping of results to relations and
attributes of model instances.

• Classification-Phase
The clustering method leads to instantiations of an abstract model concept. The type of
these model instances is specialized in this phase. Generally, it is desirable that successive
specialization of model instances leaves only a single possible type specialization before all
attributes and relations are completely specified. In the application domain of this thesis,
where kitchen items may appear in a great variety of sizes, shapes and colors, where sensory
input data with signal noise is used and where probabilistic perception methods are used,
this (automatic) specialization is not reliable. Thus, a probabilistic approach is used in the
context of this thesis.

• Fusing-Phase
The goal of the control procedure for the perception component is to focus the attention of
the robot on recognized objects that belong to the current task of the robot (task entities).
In the context of this thesis, recognized objects must be directly related to the task instance
to be a task entity. In the Fusing-Phase, recognized objects are fused with task entities
under certain conditions for that purpose. The resulting model instance represents the most
special aspects of both fused model instances.

Strategies are activated with prioritized activation rules. Only the strategy activation rule with
highest priority fires when the conditions of multiple rules are met. Strategy activation rules can
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Condition
• There is an instance of concept Item assigned to item
• - with specializable type
• - with unspecified has-annotation relation
• There is no instance of concept Item
• - with unspecified is-located-on relation

Consequence
• Activate stage Annotation-Phase

Figure 4.5 Strategy activation rule that activates the strategy Annotation-Phase if there is an
instantiation of the Item concept with unspecified annotations and if the is-located-on
relation is specified for all Item instances (this relation is resolved in the clustering
phase).

query model instances and model concepts in the condition part of the rule. In the consequence
part, the strategy activation rules usually just activate a particular strategy. Each strategy can
have multiple activation rules associated to it. The activation rules represent the meta-control:
Knowledge that is used to select the active control knowledge. As an illustration, an activation
rule for the Annotation-Phase is shown in figure 4.5.

In the proposed control procedure, another rule group for the activation of so called loop rules is
used. This rule group is activated once at the beginning of each control loop. It is used for the
streaming of sensory input data: A special concept is instantiated that leads to an activation of
the input phase.

The strategy definition that is used in the scope of this thesis is missing some aspects that
were used in the control procedure of PLAKON. This is due to missing features compared to
PLAKON: In the scope of this thesis, backtracking and constraints were not investigated. Thus,
knowledge regarding those aspects is not represented in strategies. The most important aspects
of strategies are focusing knowledge (see section 4.4.1), ordering knowledge (see section 4.4.2)
and processing knowledge (see section 4.4.3).

4.4.1 Perception Control Agenda

Agenda items are generated for unspecified aspects of model instances. Dynamic instances of
model concepts can have unspecified aspects for following reasons:

• Specialization
A model instance i0 ∈ IO can be specialized if the corresponding concept c0 = c(i0) ∈ CO

can be specialized. Thus, if there is a concept c1 ∈ CO with is-a(c1) = {c0}. The set of
possible concepts for the specialization operation is defined in the ontology O.
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Example: The robot recognizes a small red object on the kitchen table without knowing the
particular object class. This leads to an instantiation of a generic concept that is used as
parent concept for all items that might occur in kitchens.

• Parametrization
A model instance can be specialized if it has an attribute that can be specialized. The
specialized attribute value may be a concrete value or a restriction of the attribute domain.
For example numeric ranges can be specialized to specific numbers or to a subset of the
range.
Example: The domain of the position of a kitchen item (i.e., the centroid) is a 3-dimensional
vector of float ranges. The specification of this attribute is a 3-dimensional vector of concrete
float values.

• Relation
A model instance can be specialized if there is an underspecified relation. Each relation has
a minimum number of instances that are required to be related to the corresponding model
concept. If the number of related instances is less then the minimum number of required
instances, then the relation is underspecified.
Example: There may be zero or more items on kitchen tables. Thus, this particular relation
is specified independent of the number of related instances.

In the proposed control procedure, so called agenda item generators are used to dynami-
cally examine the model instances by comparing them with the corresponding model con-
cepts. Agenda items are generated for each atomic operation that can be performed on
the instances regarding to the agenda item generator implementation. To formalize agenda
items, let As = {i ∈ IO | ∃x ∈ CO : is-a(x) = {c(i)}} be the set of specialization agenda items,
Ap = {(i, a) ∈ IO ×AO | a(i) is defined and not unique} be the set of parametrization agenda
items and let Ar = {(i, r) ∈ IO ×RO | r(i) is defined and not unique} be the set of relation
agenda items. The set of all expressible agenda items A can then be written as:

A = As ∪ Ap ∪ Ar (4.4)

I propose to use a hierarchy of agendas. Each agenda consists of a set of agenda items and a set
of selection criteria (see section 4.4.2) that is used to sort the agenda items. The root agenda
Aroot ⊂ A contains an unsorted list of all generated agenda items. All other agendas – called
agenda views – inherit the items of the corresponding parent agenda. Additionally, agenda views
can filter items of the parent agenda based on an agenda item pattern (see section 4.4.1.1). The
agenda focus can be defined as boolean mapping filter : A→ BOOL from agenda items to true
if the agenda item is filtered and to false otherwise. Formally, an agenda view Aview is defined

64



4.4. CONTROL KNOWLEDGE FOR PERCEPTION PROCEDURES

as:
Aview = {x ∈ Aparent | filter(x) = false} (4.5)

Where Aparent is the parent agenda of Aview.

Each strategy declares a set of agenda selection criteria as well as an agenda focus. Thus, each
strategy has a distinct agenda view. All agenda views are managed in parallel. This allows fast
switching between strategies with the drawback of higher computational costs when a strategy
is active for a long time. Contrary, only the agenda of the currently active strategy is managed
by the control procedure in PLAKON.

4.4.1.1 Agenda Focus

The agenda focus is used to filter agenda items that are irrelevant in the current stage of the
control procedure. For example, only parametrization agenda items might be relevant if the
subject of the current control stage is the annotation of various recognized objects on the kitchen
table.

The agenda item pattern does not differ notably from the agenda item pattern used in PLAKON.
It allows to specify the agenda item type, a model concept, particular slots (attributes and
relations) and aggregate concepts (which include related concepts). In the proposed control
procedure, the agenda focus pattern is augmented by conjunction and disjunction of agenda foci.
Let P = {A→ BOOL} be the set of expressible patterns which map agenda items to true if the
pattern matches and to false otherwise. For the pattern focus fp : A→ BOOL, following holds
true: fp(x) = p(x). Finally, let F = {A→ BOOL} be the set of expressible agenda foci. The
conjunction focus c ∈ F and the disjunction focus d ∈ F can be written as:

cfg(x) = f(x) ∧ g(x)

dfg(x) = f(x) ∨ g(x)
(4.6)

Where f, g ∈ F are arbitrary agenda foci.

4.4.2 Selection of Perception Methods and Recognized Objects

Agenda items represent atomic operations that can be performed on model instances. This
allows flexible selection of operations based on control knowledge estimations of selection criteria.
Furthermore, the agenda focus (see section 4.4.1.1) can be used to filter agenda items which are
irrelevant in the current stage of the control procedure. For each agenda view Aview there is an
ordered sequence of selection criteria sel0 . . . seln defined with seli ∈ {A→ R}. The sequence
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of selection criteria is ordered by priority. High selection values correspond to high priority for
the processing of the particular item. Let pos : A → N be a mapping from agenda item to the
position of the item in the agenda (0 is the position of the item that will be processed next).
The agenda view is sorted so that i0 ∈ A is positioned before i1 ∈ A if sel(i0) ≥ sel(i1). The
item comparison procedure is shown in algorithm 1.

Algorithm 1 Agenda Item Comparison
1 function COMPARE(i0, i1, sel0 . . . seln) ▷ For i0, i1 ∈ A, n ∈ N, n > 0
2 if sel0(i0) ̸= sel0(i1) then
3 return sel0(i0)− sel0(i1)
4 else
5 return COMPARE(i0, i1, sel1 . . . seln) ▷ Check next criterion
6 function COMPARE(i0, i1, sel0)
7 return sel0(i0)− sel0(i1)

The selection criteria represent ordering knowledge that is used to affect the sequence of processed
agenda items. The most essential selection criterion is the selection by agenda item patterns.
The pattern used for agenda item selection does not differ notably from the one used in the
PLAKON control mechanism. The pattern selection criterion assigns a value of 1 to all agenda
items which match the pattern and a value of 0 to all other agenda items. Agenda item patterns
may appear multiple times in the sequence of selection criteria. Another basic selection criterion
– that was used in the control mechanism of PLAKON – is the selection by continuity where a
value of 1 is only assigned to the last modified model instance. A value of 0 is assigned to all
other model instances.

Contrary to the control mechanism of PLAKON, the proposed procedure does not require that it
is possible to process agenda items. It may be the case that an agenda item cannot be processed
in a particular situation. For example, the robot may need to look at an object from another
view point in order to find out the type of that object. I propose to use a simple inhibition
selection method that assigns negative values to selected agenda items in order to avoid that the
control procedure continuously tries to process the same agenda item.

The selection criteria allow to integrate top-down methods of computational attention that were
discussed in section 3. This is possible because most methods basically have influence on the
ordering and parametrization of methods involved in the perception process. This ordering
knowledge can be expressed using selection criteria. For instance, a bottom-up saliency selection
method could assign high values to agenda items of model instances with high saliency based
on attribute values and relations of the instance. In the following, two of the attention methods
are integrated in the expert system architecture using the selection criteria interface. First, a
relational task relevance estimation approach (see section 4.4.2.1) and second a probabilistic
model instance classification approach (see section 4.4.2.3).

As an illustration, a sequence of selection criteria – as they could be used for the annotation of
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Agenda Selection Criteria

1. Prefer items which were processed less often
2. Prefer the last modified model instance
3. Prefer items similar to a task entity
4. Prefer items with relations to task entities
5. Prefer Relation agenda items
6. Prefer the Geometry model concept
7. Prefer the SemanticColor model concept

Figure 4.6 A sequence of selection criteria that could be used for the annotation of recognized
entities in the perception process. The list is ordered by priority.

previously recognized kitchen items – is shown in figure 4.6.

4.4.2.1 Relational Task Distance

The kitchen environment can be highly cluttered and many objects without relevance for the
current task can appear. For instance, all objects on a specific table are directly relevant for
the task when the robot is supposed to select a object that is on top of the table in order to
accomplish the current task. Objects with a relation located-at to the table are particular relevant
in the context of this task. Contrary, items that are not located on top of the table are irrelevant
in this scenario (as long as they do not interfere with the actions of the robot).

The relational task distance approach that is proposed in this section is inspired by the compu-
tational attention approach that was discussed in section 3.1.4 (task relevance graph). Model
instances are interpreted as nodes and relations between model instances are interpreted as edges
in the graph. Task relevance can then be estimated by finding a path in the model instance graph
that connects the instance of interest with a task entity. The relational task relevance of a model
instance is anti proportional to the distance of the best path from the the model instance to an
arbitrary task entity. The transition cost between concepts is given by a user defined function
that maps relations to a cost value. Contrary to the approach that was discussed in section 3.1.4,
this approach does not depend on a particular syntax for tasks (a task consists of object, subject
and action in the task relevance graph approach). This allows a more flexible handing of tasks
which is required in the kitchen domain (e.g., there is no subject during navigation). In the task
relevance graph approach, transitions are weighted based on the co-occurrence of objects. This
is useful in order to enhance the paths of entities which occur often together with one of the
task objects. The weighting based on object co-occurrence of objects was not investigated in the
scope of this thesis because it is sophisticated and time intense to gather representative training
data for the kitchen domain.
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I propose to use two graphs for the task relevance estimation: A static graph of model concept
nodes and relation edges that can be used to find the distance between model concepts and a
dynamic graph of model instance nodes and relation edges that can be used to find the distance
between model instances. The concept graph and the instance graph are formally defined in
following paragraphs.

Concept Graph Ontologies can be interpreted as directed graphs where each node corresponds
to a model concept and where each edge corresponds to a relation between concepts. Let O be
an ontology, CO the set of concepts and RO = {CO → C∗

O} the set of relations declared in O.
Relations are used to map concepts to the set of related concepts. Let further EO ⊂ CO×RO×CO

be the set of relation edges. Each edge is specified by the source concept, the relation and the
target concept. The edges can be defined based on concepts and relations in O:

EO = {(c0, r, c1) ∈ CO ×RO × CO | c1 ∈ r(c0)} (4.7)

Finally, let sO : EO → CO be the mapping from edges to the source nodes of the edges,
tO : EO → CO the mapping from edges to the target nodes of the edges and rO : EO → RO the
mapping from edges to the relations that corresponds to the edges. The concept graph GO can
then be written as:

GO = (CO, EO, sO, tO, rO) (4.8)

The concept hierarchy is acquired by a knowledge engineer and the task relevance is estimated
in applications based on this previously modeled concept hierarchy. Thus, the concept hierarchy
does not change during run time in the task relevance estimation process. I propose to compute
all shortest paths with respect to an user specified relation weighting in advance using the Floyd-
Warshall algorithm [Flo62]. The algorithm has cubic complexity in the number of nodes of the
graph (O(#C3

O)) and it must only be processed once in the initialization process because the
structure of the graph does not change during run time. After initialization, the distance between
two concepts can be queried in constant time. In summary, the Floyd-Warshall algorithm initially
sets the distance between two different nodes to the minimal weight of relations between the
nodes. The distance is set to infinity if there are no relations between the concepts. This can be
expressed using the distance function distCO

: CO × CO → R:

costCO
(c0, c1) =

minr∈X αr if X = {r ∈ RO | c1 ∈ r(c0)} ≠ ∅

∞ else
(4.9)

Where αr is a user defined weighting factor for relation r. In the following, the algorithm subse-
quently allows previously unused nodes on paths between two nodes and updates the minimum
distance if a better path was found. This leads to the computation of all shortest paths in GO.

68



4.4. CONTROL KNOWLEDGE FOR PERCEPTION PROCEDURES

Instance Graph Model instances are dynamic instantiations of model concepts. Thus, the
graph concept can be applied to instances analogues where each node corresponds to a model
instance and where each edge corresponds to a relation between instances. Let IO be the set of
dynamic instantiations of model concepts in O and let R′

O = {IO → I∗O} be the set of relations
between instances in IO. The edges between instances E′

O ⊂ IO ×R
′

O × IO can then be defined
as:

E
′

O =
{
(i0, r, i1) ∈ IO ×R

′

O × IO | i1 ∈ r(i0)
}

(4.10)

Algorithm 2 Dynamic Best Task Path
1 d : IO → R ▷ Maps model instances to cost of best task path
2 tasks ← ∅ ▷ The set of task entities
3 instances ← ∅ ▷ All other model instances
4 function ADD-TASK(t) ▷ t is a task entity
5 d(t) ← 0 ▷ Distance to task entity is zero
6 for i ∈ instances do ▷ Add concept graph edge to all model instances
7 ADD-PATH(t, i, γ + costCO

(t, i))

8 EXPAND-TASK(t, ∅) ▷ Add edges to related instances
9 tasks ← tasks ∪ {t}

10 function EXPAND-TASK(e, visited)
11 if e ̸∈ visited then
12 visited ← visited ∪ {e}
13 for r ∈ R′

O do ▷ For each relation mapping
14 for i ∈ r(e) do ▷ For each related instance
15 ADD-PATH(e, i, costIO(e, i))
16 EXPAND-TASK(i, visited)

17 function ADD-ENTITY(e)
18 d(e) ← ∞ ▷ Distance to task entity initialized to infinity
19 for t ∈ tasks do ▷ Add concept graph edge to all task entities
20 ADD-PATH(t, e, γ + costCO

(t, e))

21 for i ∈ instances ∪ tasks do ▷ Add edges to related instances
22 for r ∈ R′

O do ▷ For each relation mapping
23 if i ∈ r(e) then
24 ADD-PATH(e, i, costIO(e, i))

25 if e ∈ r(i) then
26 ADD-PATH(i, e, costIO(i, e))

27 instances ← instances ∪ {e}
28 function ADD-PATH(i0, i1, δ)
29 d(i1) ← min(d(i1), d(i0) + δ) ▷ Update minimum distance

Each instance i ∈ IO corresponds to a model concept c ∈ CO (the type of the instance). Let
c : IO → CO be the mapping from instances to corresponding concepts so that c = c(i) holds
true. I propose to add edges – called concept graph edges – between distinct model instances
based on the best path between the corresponding model concepts in the concept graph GO. For
that purpose, a relation rC : IO → I∗O is introduced with: rC(i0) = {i1} ∀ i0, i1 ∈ IO, i0 ̸= i1.
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Figure 4.7 Relational task relevance example. The task relevance of model instance Item0 is
estimated by finding the shortest path to a task entity. In this example, transition
costs of 1.0 are assigned to each transition. This leads to a shortest path from the
Item0 to the IceTea0 model instance with a distance of 3.0. The distance to Item0 is
written next to nodes in the graphic.

Thus, there is a concept graph edge for each model instance pair in the instance graph. The set
of edges introduced by relation rC can be written as:

E
′′

O =
{
(i0, rC , i1) ∈ IO ×R

′′

O × IO | i1 ∈ rC(i0)
}

(4.11)

Where R′′

O = {rC} is the concept graph relation. Formally, the instance graph G
′

O can then be
written as:

G
′

O = (IO, E
′′′

O , s
′

O, t
′

O, r
′

O) (4.12)

Where E′′′

O = E
′

O ∪ E
′′

O is the set of edges, s′O : E
′′′

O → IO is the mapping from edges to the
source nodes of the edges, t′O : E

′′′

O → IO is the mapping from edges to the target nodes of the
edges and r

′

O : E
′′′

O → R
′

O ∪ R
′′

O is the mapping from edges to the relations that correspond to
the edges.

It is important that there is a path to task entities for all instances in IO because the relevance
is directly computed based on the path distance. Since rC adds an edge between all distinct
instances, it is obvious that G′

O is fully connected.

The distance function distIO : IO×IO → R between related instances is defined as the minimum
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cost of relations between them:

costIO(i0, i1) =

minr∈X βr if X =
{
r ∈ R′

O | i1 ∈ r(i0)
}
̸= ∅

∞ else
(4.13)

Where βr is a user defined weighting factor for relation r. Finally, the distance function is
redefined based on the distance between the corresponding concepts:

cost
′

IO
(i0, i1) = min(costIO(i0, i1), γ + costCO

(c(i0), c(i1))) (4.14)

Where γ is a user defined cost for a transition from the instance graph into the concept graph.

Model instances are dynamically instantiated. Thus, a dynamic procedure for the computation
of shortest paths is required. In the proposed algorithm, task entities and none task entities
are handled separate. The cost of each entity is initialized to zero for task entities and to the
minimum transition costs of the corresponding concept to a concept that corresponds to a task
entity in GO for none task entities. Finally, the costs are updated when instances are related to
each other based on the cost function costIO(i0, i1). The distance between instances is always
less then infinity because GO is fully connected. Algorithm 2 illustrates this procedure.

4.4.2.2 Edit Distance between Model Instances

In the proposed perception control mechanism, a simple similarity metric is used that is inspired
by the edit distance [Lev66] between strings where the number of insert and delete operations is
counted in order to estimate the similarity between strings. This similarity metric is supposed
to be used in order to estimate the similarity of recognized objects and task entities based on a
comparison of specified attributes and relations of the task entity.

The edit distance between a task entity t ∈ ITO
and a recognized object x ∈ IO is computed based

on annotations of the task entity (e.g., the specification of the color for the visual search target).
Annotations are attached to task entities and recognized objects with the has-annotation relation.
For each annotation of the task entity t, the minimum distance to an arbitrary annotation of x is
computed. The similarity mapping edit(·) between model instances is defined as the normalized
sum of these minimum distances:

edit(t, x) =
1

|At|
∑

at∈At

min
ax∈Ax

distance(at, ax) (4.15)

Where At = has-annotation(t) and Ax = has-annotation(x).

The value of annotations is either represented by a string, a nominal value or a continuous value.
The distance between feature values is computed as follows:
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• String Features: The distance between string features is computed based on the Levenshtein
distance [Lev66]. The distance is normalized by the maximum number of characters in the
compared strings.

• Nominal Features: Nominal features are compared by equality. The normalized similarity is
maximal (1.0) if both values are equal, otherwise the normalized similarity is minimal (0.0).

• Continuous Features: Continuous numeric attributes are normalized by an user defined
maximum value. The distance between continuous features is defined as the difference of
normalized values.

4.4.2.3 Similarity to Task Entities

Attention leads to selective selection of scene regions, objects and features that are relevant in the
context of the current task. In the perception procedure, the type of objects might be unknown
and attributes and relations might be unspecified for recently recognized objects (also called
proto-objects; see section 3.1.1). Selective selection of proto-objects based on the similarity to
task entities can be achieved by a naive Bayes’ classifier (see section 3.2). Incremental annotation
of proto-objects leads to changes in similarity to task entities. For instance, in the first step after
clustering of proto-objects, the type is unknown and none of the attributes and relations are
specified for the recognized proto-objects. All proto-objects have identical task similarity in this
situation. In a later step, when some annotations has been computed for the proto-objects, there
maybe some proto-objects with higher probability to be a task entity then others. For example,
a proto-object with dominant blue color is more likely to be a task entity then a proto-object
with dominant green color if the search target is a milk carton (at least in Germany, milk cartons
are usually bluish).

For the task entity classification selection method, a frequently used naive Bayes’ implementa-
tion is used [JL95]. Nominal and continuous features are supported by this implementation.
Continuous features are handled using a Gaussian normal distribution (see equation 3.15). The
mean and variance parameters of the distribution can be obtained from training samples with
low computational overhead. Furthermore, the parameters can be dynamically updated without
the need to process the complete training set again. The naive Bayes’ implementation option-
ally allows to discretize continuous attributes. Unspecified model instance features are ignored
during classification.

Initially, a feature vector FC(c) must be obtained for each model concept c ∈ CO that is is
supposed to be used in the classification procedure. In the proposed control procedure, this is
limited to model concepts that share a user specified base concept item ∈ CO (regarding to the
type hierarchy). Thus, there is a model concept sequence c0 . . . cn with c0 = c, cn = item and
ci+1 ∈ is-a(ci) for all model concepts that support classification. The is-a relation is transitive.
Thus, a is-a b∧b is-a c→ a is-a c holds true. Therefore, we can write c is-a item for concepts c ∈
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CO that support classification. Not all attributes of the model concepts are intended to be used
as features for the classification procedure. Thus, a method is required that tags model concept
attributes as classification features. In the proposed classification based agenda selection method,
a special attribute – features – is used. The attribute value represents the set of classification
feature names for the particular concept. All other attributes are ignored during classification.
I propose to use so called property relations in order to augment the feature vector of model
concepts for the classification procedure. In the following, let PO ⊂ RO be the set of property
relations which are declared in ontology O.
Definition 4.4.1. The model concept p ∈ CO is called property concept of c ∈ CO if there is a
property relation rp ∈ PO with p ∈ rp(c).

Classification features of property concepts are included in the feature vector of the model concept
that supports classification.
The feature vector computation procedure is shown in algorithm 3.

Algorithm 3 Model Concept Classification Features
1 function FC(c)
2 out ← [] ▷ The feature vector
3 FC(c, out)
4 return out
5 function FC(c, out)
6 for attribute ∈ features(c) do ▷ attibute ∈ AO

7 out ← out+ [attribute(c)]

8 for rp ∈ PO do ▷ rp is a property relation
9 for p ∈ rp(c) do ▷ p is a property concept

10 FC(p, out)

Model concepts provide the feature vector domain. The prototypical values of feature attributes
define the domain of that particular feature instead of an explicit value. For example, the value
of a feature attribute ‘color‘ that represents the dominant colors of an entity may be given by
a selection set of color name constants (e.g., red, green, …). Model instances provide dynamic
instantiations of the feature vector where the feature attribute values must be specialized to an
unique value to be usable for classification. For instance, the ‘color‘ attribute could be specialized
to an explicit color constant like red. Feature attributes of model instances that are not unique
remain unspecified for the classification procedure (a constant value Unspecified is used in this
case). In the following, let FI(i) be the classification feature vector of instance IO and let
P

′

O ⊂ R
′

O be the set of property relations which are declared in ontology O.
Definition 4.4.2. The model instance p ∈ IO is called property instance of i ∈ IO if there is a
property relation r

′

p ∈ P
′

O with p ∈ r′

p(i).

The feature vector computation procedure is illustrated in algorithm 4.

Such a feature vector is computed for each training instance in order to obtain the parameters of
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Algorithm 4 Model Instance Classification Features
1 function FI(i)
2 out ← [] ▷ The feature vector
3 FI(i, out)
4 return out
5 function FI(i, out)
6 c ← c(i) ▷ c ∈ CO

7 for attribute ∈ features(c) do ▷ attibute ∈ AO

8 if attribute(i) is unique then
9 out ← out+ [attribute(i)]

10 else
11 out ← out+ [Unspecified]
12 for r′

p ∈ P
′

O do ▷ rp is a property relation
13 for p ∈ r′

p(i) do ▷ p is a property instance
14 FI(p, out)

the probabilistic model for each model concept that supports classification. This model can be
used in the classification selection method in order to estimate the similarity of model instances
and task entities. Let i ∈ IO be a model instance with i is-a item and let c ∈ CO be a concept
that corresponds to a task entity. Thus, there is a task entity t ∈ ITO

with c = c(t). This
classification procedure can be expressed by the following mapping classify : IO × CO → R (see
equation 3.10):

classify(i, c) = P(C=c | F=FI(i))

= P(F=FI(i))
−1P(F=FI(i) | C=c)P(C=c)

(4.16)

The prior P(F=FI(i))−1 prefers rare feature values. This makes sense because rare values might
be more expressive then frequent values. The other prior (P(C=c)) prefers concepts with a high
number of corresponding training instances. Finally, P(F=FI(i) | C=c) prefers feature responses
that are likely for the target model concept.

In the proposed classification selection method, the similarity between a model instance i ∈ IO
and a task entity t ∈ ITO

is defined as classification problem. The similarity is maximal if the
class of the model instance is already a parent class of the the task entity class and it is minimal
if both classes are incompatible. In the other case, the classification model is used to estimate the
probability that the model instance can be specialized to the model concept that corresponds to
the task entity. This can be interpreted as mapping similarity : IO× ITO

→ R of model instance
and task entity pair to a similarity value in range [0, 1]:

similarity(i, t) =


1 if c(t) is-a c(i)

classify(i, c(t)) if c(i) is-a c(t)

0 else

(4.17)
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There may be multiple task entities. The selection method estimate is defined as the maximum
similarity to a task entity. This can be expressed by a mapping classify-selection : IO → R that
maps a model instance i ∈ IO to the maximum task similarity value:

classify-selection(i) =

1 if i ∈ ITO

maxt∈ITO
similarity(i, t) else

(4.18)

Summarizing, the proposed classification selection method prefers model instances with high
probability to share the object class with a task entity. This method can be used to focus
the perception methods on likely task entities by ordering the agenda items based on the task
similarity estimate.

4.4.3 Invocation of Perception Methods

An agenda item can be interpreted as a description of an atomic operation that can be performed
on the model instance that is referred by the agenda item. It includes information about the op-
eration type, a specific attribute or relation and the allowed domain for the operation. However,
it does not include information about the methods that could be used to compute a meaningful
value that specializes the item domain. Agenda processing methods are domain independent
procedures which are used to specialize dynamic model instances based on the corresponding
model concept. The knowledge about agenda item processing methods is included in the control
strategy.

In PLAKON, each strategy contains a prioritized list of method descriptions. For each selected
agenda item, this sequence is processed in priority order until one of the methods returned a
value that is consistent with the domain of the agenda item. In the proposed control architecture,
strategies are extended in order to contain a prioritized list of so called flows. Each flow contains
a prioritized list of method descriptions. Each method description includes the method name and
configuration parameters for the method. This allows to execute methods in different contexts
using a different set of configuration parameters. Additionally there is an agenda item pattern
defined for each flow. A flow is only activated if the selected agenda item matches this pattern.

To formalize this, let F be the set of flows defined in strategy S and let A be the agenda of
S. For each flow flow ∈ F, there is a corresponding agenda item pattern pflow ∈ P , where
P = {A→ BOOL} is the set of expressible patterns which map agenda items to true if the
pattern matches and to false otherwise. flow is only activated for agenda items item ∈ A which
match the pattern: pflow(item) = true.

Selected agenda items may turn out to be invalid (empty domain) or unique (domain is a unique
value). In the first case, the item is removed from the agenda because the corresponding operation
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must not be executed anymore. In the second case, the unique value is applied without the usage
of agenda processing methods. Furthermore, there may be no activation pattern that matches
the selected item. In this case, the item cannot be processed and must be removed from the
agenda. The complete sequence of referenced methods is executed when a flow with a matching
activation pattern was found. This step of the control loop is completed if the agenda item
domain turned into a unique value after the methods were executed. Otherwise, the agenda item
is postponed using the inhibition agenda selection method (see section 4.4.2). This procedure is
illustrated in algorithm 5.

Algorithm 5 The Agenda Processing Algorithm
1 function PROCESS-AGENDA(S) ▷ S is a control strategy
2 A ← Agenda of strategy S
3 for item ∈ A do
4 if item is invalid then ▷ Drop invalid items
5 A ← A \ [item]
6 else if item is unique then ▷ Automatically process unique items
7 Apply unique value
8 A ← A \ [item]
9 else

10 PROCESS-ITEM(S, item)
11 if item is unique then ▷ Exit if the item domain is unique after processing
12 break
13 function PROCESS-ITEM(S, item)
14 has-flow ← false ▷ Is there a matching flow?
15 F ← Flow sequence of strategy S
16 for flow ∈ F do
17 pflow ← Activation Pattern of flow
18 if pflow(item) then ▷ If the activation pattern matches the agenda item
19 has-flow ← true
20 PROCESS-FLOW(item, flow)
21 if item is unique then ▷ Exit if the item domain is unique after processing
22 break
23 if has-flow = false then ▷ If there is no matching flow sequence
24 A ← A \ {item}
25 function PROCESS-FLOW(item, flow)
26 X ← Sequence of agenda processing methods of flow
27 for m ∈ X do ▷ For each processing method of flow
28 CFG ← Configuration parameters of method m in flow
29 m(item,CFG) ▷ Execute the agenda processing method m

The domain of agenda items depends on the agenda item type. Supported types and domains of
agenda items do not notably differ from the ones supported in PLAKON. The set of supported
agenda item types includes the operations:

• Specialization
Represents a specialization along the type hierarchy. Thus, a specialization of the model
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concept that corresponds to the selected model instance.

• Parametrization
Represents a specialization of an attribute value of the selected model instance. This includes
the restriction of the attribute value domain and the specification of unique attribute values.

• Decomposing
The decompose operation instantiates model concepts based on a particular relation of the
selected model instance in order to create the relation between the selected model instance
and the instantiated model concepts.

• Integration
This operation is similar to the decompose operation. The objective is to relate different
model instances to each other. But this operation does not instantiate model concepts:
Existing model instances are integrated along a particular relation.

• Fusing
The fuse operation integrates a model instance into another existing instance. The resulting
model instance represents the most special aspects of both model instances.

In the scope of this thesis, following agenda processing methods are used:

• Dynamic and Static Default
Static defaults are supported only for the Decomposing operation (where the default car-
dinality is used) and the Parametrization operation (where the default attribute value is
used). In both cases, the default value is attached to the particular entities in the ontology.
Dynamic defaults include the computation of the minimum and maximum. These methods
are only supported for the Decomposing operation and for the Parametrization operation
of parameters with a domain where a maximum and a minimum are defined (for example
numeric ranges). Furthermore, there is a method that allows the knowledge engineer to
specify a constant or dynamic value. Dynamic values are realized using computable at-
tribute values. The result of the computation is a specialization the computable value. This
is used to access available model instances in order to dynamically read attribute values.
For example, the configuration parameters of methods can be attached to model instances
and then applied using computable attribute values before the method is executed.

• Control Rules
This method is used in order to fire active rules of a specific set of rules. The rules must be
contained in the same rule group. The name of the rule group is a configuration parameter
of this method. Furthermore, it is possible to specify that only a single rule should fire or
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that it is allowed to fire multiple rules. Rules have access to the currently selected agenda
item and all other instantiated model concepts. The consequences of these rules are not
limited to the selected agenda item and the corresponding value domain. Thus, it is allowed
that rules affect other agenda items then the selected one.

• User Question
User Question methods wait on user input for a valid domain specialization. The only
method that is supported shows a Graphical User Interface (GUI) dialog on the screen and
waits until the user hits one of the dialog buttons.

• Task Definition
Contrary to PLAKON, the proposed control procedure supports the dynamic definition and
manipulation of tasks. For example, when a task was completed, it can be entirely replaced
by a new task. This is basically realized by manipulating relations between the instance of
the task concept and other model instances (see section 4.3). Note that there is only one
dedicated instance of the task concept that is used to tag model instances as task entities.
Additionally, unrecognized and underspecified task entities are removed when the task is
deactivated.

• Perception Methods
The perception agenda processing methods correspond to methods of the perception com-
ponent (see section 2.2.3). There is an agenda processing method for each of the perception
methods (the methods are generically exposed to the control component). This set of meth-
ods is comparable with simulation methods as they were used in PLAKON. Many of the per-
ception methods used in the perception component provide more information then required
according to the selected agenda item. For example, the CLuster3DGeometryAnnotator
computes the size and the shape of objects. The perception component uses a custom data
store – the Common Analysis System (CAS) – that is provided by the UIMA implementa-
tion. Mapping of perception method results to model instances is realized using a special
CAS agenda processing method.

• CAS Mapping
The CAS mapping method reads feature values from the perception data store and uses
them to specialize the domain of the selected agenda item. The method also supports to
decompose relations based on aggregate feature values which contain a set of other feature
values. It is convention that the type name of the aggregate feature must be equal to the
name of the instantiated model concept. For example, a feature with the type Pose in
the perception component corresponds to a model concept Pose in the control component.
Nesting of aggregate features is allowed too. Furthermore, there is a method that allows to

78



4.4. CONTROL KNOWLEDGE FOR PERCEPTION PROCEDURES

clear the perception data store and to remove specific features.

• Classification
The classification method is only used for the Specialization operation where the agenda
item domain D is a selection set of model concept specializations: D ⊂ CO. The result
of a classification method selects the model concept with maximum probability to be a
specialization of the selected model instance i ∈ IO. This can be achieved using a Bayes’
classifier (see section 3.2.2):

λ = arg max
c∈D

P(C=c | F=FI(i))

κ = max
c∈D
P(C=c | F=FI(i))

(4.19)

Where FI(i) is the feature vector of object annotations, λ ∈ CO is the selected model concept
and κ ∈ R is the classification confidence. The agenda processing method allows to specify a
minimum classification confidence (the classification threshold). Classifications with a lower
confidence are ignored.

• Fusing
The fuse method is dedicated to the Fusing operation: Two model instances are joined into a
single model instance that represents the most special aspects of both fused model instances.
In the scope of this thesis, the fuse method is used to integrate recognized objects into the
task hierarchy. The task is completed if all task entities are fused with recognized objects
or previously known objects (such as the kitchen table). The fuse method is supposed to
join two model instances which represent the same object. It is required that the types of
both model instances are equal. Type specialization operations must be performed before
the fuse operation. Furthermore, it is required that the types are final (i.e., the type cannot
be specialized anymore). Note that this makes it impossible to formulate visual search tasks
such as “Find the small yellow thing on the kitchen table” where the type of the object is no
known in advance. Additionally, model instances can only be fused when their attributes and
relations are compatible with each other. For attributes, this means that the edit distance
between attributes must be below an user defined threshold. For relations, this means that
it must be possible to add the related objects of one model instance to the set of related
objects of the other instance.
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4.5 Summary and Discussion

In this chapter, I presented an adaption of the ontology-based control mechanism of PLAKON in
the context of perception in the kitchen domain and intended as a framework for computational
attention methods. Perception methods are selected and configured based on control knowledge
and estimates of computational attention methods. The control knowledge for particular stages
in the perception procedure is collected in strategies. Each strategy consists of focusing, ordering
and processing knowledge. The activation of strategies is done using rules. The activation rules
can be seen as meta-control: Knowledge dedicated to the selection of the active control knowledge.

In the scope of this thesis, the ordering knowledge is particular relevant because it can be
represented by methods of computational attention. Ordering knowledge can express priorities
for recognized objects (object-based attention; focusing of particular model instances), attributes
of the objects (feature-based attention; focusing of particular attributes of the attended model
instance) and regions in the kitchen (region-based attention; focusing of objects with located-
at relation to particular furniture objects in the kitchen). In section 4.4.2.1, I proposed an
attention method that uses the relation hierarchy between model instances and task entities in
order to estimate the relational distance between the model instances and the task entities. The
task relevance is computed based on the minimum distance to a task entity. This approach is
inspired by the attention method that was discussed in section 3.1.4. Probabilistic approaches
for computational attention (see section 3.2) are usually defined as classification problem where
a set of feature measurements is used to predict the corresponding class label. There are many
slightly different approaches to model the attention mechanism in a probabilistic manner (see
section 3.2.2, 3.2.3). Most of them are based on Bayes’ rule. In the scope of this thesis, a naive
Bayes’ classifier is used as it was discussed in section 3.2. The classifier is used to prioritize
recognized objects with high similarity to task entity types according to the classifier.

Processing knowledge is used to represent the dynamic selection and configuration of perception
methods in particular stages of the perception procedure and for particular selected features and
recognized objects. This flexible handling of perception methods allows to execute the methods
in different contexts and it allows flexible selection of methods based on object types, features or
regions in the kitchen. For example, it is possible to define different perception method sequences
for the clustering of objects in fridges and for objects on tables.
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Chapter 5

Implementation Details

The control architecture that I propose in this thesis is implemented in the object oriented
programming language Java. Java suits well for the RoboSherlock perception component (see
section 2.2.3) because it is integrated in a plugin framework that provides a interface for Java
software. This allows seamless integration of the perception component in the control component.
Furthermore, there are Java implementations of many machine learning algorithms publicly
available. In the scope of this thesis, Weka 1 (Waikato Environment for Knowledge Analysis) is
used for the classification of recognized objects.

The implemented control framework is intended as a re-usable and generic framework for vari-
ous perception tasks. No code has to be written to adapt the framework for other perception
scenarios then one of the reference scenarios of this thesis (see section 2.3). It is sufficient that a
knowledge engineer modifies the ontology and the control knowledge in order to model different
tasks. The framework is modular on different layers: It is embedded into an Open Service Gate-
way initiative (OSGi) based Java plugin framework, the control framework consists of a set of
control components and control knowledge plugins and all perception methods are dynamically
loadable plugins in the UIMA based plugin architecture of the perception module. This layered
architecture is illustrated in figure 5.1 and different aspects of the modularity are discussed in
more detail in section 5.1.

The Java plugin framework that is used supports the registration of services. Java interfaces are
used to specify the signature of services. Multiple implementations of the same service interface
can be registered. Services are intended to be used in plugins of the framework.
Interfaces and implementations are decoupled for the core components of the control architecture.
This allows to hide implementation details from other components (the Java packages are not
exported to the Java class loader path of other components). Furthermore, this allows multiple
implementations of the interfaces.
The interface pattern is compatible to the service architecture of the plugin framework. Different
implementations of the interfaces can be registered and plugins can query the registered services
1http://www.cs.waikato.ac.nz/ml/weka/
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Figure 5.1 Layered architecture of the perception control framework.

for a particular interface.

The GUI is an essential aspect of this control framework because it allows the acquisition of
control knowledge by a knowledge engineer as well as the application of the acquired knowledge
(i.e., the execution of perception methods based on the acquired knowledge). It is integrated in
a docking framework that allows users to set up custom layouts for the GUI.
Expert knowledge is required in order to formulate control rules. The complexity of the rule
formulation depends on the syntax of control rules: It is harder to maintain control rules with
a sophisticated syntax then it would be to maintain control rules in a syntax that is similar to
natural language. Furthermore, the separation of rules into different rule groups improves the
maintainability of rules in the control architecture. In section 5.2, I discuss the syntax of control
rules and describe the rule editor of the control GUI.
Finally, I will discuss the acquisition and application of control knowledge in section 5.3.

5.1 Modular Architecture

The control framework is modular on multiple layers.
On the top layer, the framework consists of a collection of plugins in a widely used plugin
framework for the Java programming language (see section 5.1.1).
The Java plugin framework is also used to make control components extendible by plugins. For
example, different implementations of control rules can extend the selection of available rule
formalism for the acquisition and application of control knowledge (see section 5.2).
Furthermore, another plugin architecture is used by the perception component RoboSherlock
. Each of the perception methods of RoboSherlock is a shared library that is loaded into this
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framework. The plugin architecture of RoboSherlock is discussed in section 5.1.2.

5.1.1 Open Service Gateway initiative (OSGi)

The proposed control framework is embedded into OSGi 2 which is a widely used plugin frame-
work specification for the Java programming language. There are multiple implementations of
the OSGi specification available ( Felix 3, Equinox 4, Knoplerfish 5). I used the Equinox OSGi im-
plementation for the validation of the control framework because it allows a seamless integration
with the eclipse development platform (eclipse is based on the equinox OSGi implementation).
But this framework does not depend on Equinox, other OSGi implementations can be used as
well.

Plugins are called bundles in OSGi. Bundles must implement the BundleActivator interface (start
and stop methods) and they can import packages from the system or from other bundles. Bundles
can also export packages so that other bundles can import them and they can offer multiple
services to other bundles. Services are always separated into interface and implementation.
The OSGi system loads the default bundle on startup (all other bundles will be started from
within the default bundle) and it defines system packages and system services that will be
exported to all other bundles.
System packages can be imported by bundles. Note that all java.* packages are system packages
by default. Additional packages must be exported explicitly by the OSGi framework (for example
any javax.* packages) or by a custom bundle that includes the implementation of the exported
packages.
System services are the services which are exposed by the default bundle. Therefore system
services are available for all bundles (because all bundles are loaded from within the default
bundle). The most commonly used system services include services for logging of messages (the
Pax Logging service) and configuration of bundles (the ConfigurationAdmin and Pax ConfMan
services).

OSGi allows flexible configuration of the set of installed and automatically started bundles.
Different initialization levels are used in order to sequence the initialization of bundles. Further-
more, bundles can be dynamically installed, uninstalled, started and stopped. This allows that
parts of the application can be unloaded, modified by a programmer and loaded again without
termination of the framework. The user interface that was implemented for the management of
OSGi bundles is shown in figure 5.2.

2http://www.osgi.org/
3http://felix.apache.org/
4http://www.eclipse.org/equinox/
5http://www.knopflerfish.org/
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Figure 5.2 The Bundle Management GUI. The list of installed bundles. A pop-up menu allows
to dynamically start, stop and uninstall the selected bundle.

The control framework consists of 36 custom bundles including a bundle that provides a GUI
service implementation (org.tzi.tarot.gui), a few bundles that implement the control mechanism
(org.tzi.tarot.control.*), a few ontology related bundles (org.tzi.tarot.kon.*), bundles dedicated
to the export of external libraries (org.tzi.tarot.weka, org.tzi.tarot.drools, …) and bundles that
provide different GUI components (e.g., the plugin management GUI component shown in figure
5.2).

5.1.2 Unstructured Information Management Architecture (UIMA)

The perception component – RoboSherlock – consists of a set of methods dedicated to the percep-
tion procedure. The methods are integrated into an architecture for the analysis of unstructured
data (UIMA). Each perception method is a shared library that can be loaded dynamically at run
time of the framework. In the context of UIMA, perception methods are called analysis engines.
The so called descriptors of analysis engines are used to expose the set of perception methods
and their parameters to the control component. Perception method descriptors basically contain
the name of the method and a set of configuration parameters (name, type, default value). This
information is exposed to knowledge engineers during acquisition of control knowledge.
The flow controller component of UIMA is particular relevant for the control procedure. It is
used to dynamically select analysis engines for execution. UIMA only defines the interface for
flow controller. The flow controller interface is implemented by the control component in order
to do the analysis engine selection based on control knowledge and methods of computational
attention. Additionally, dynamic reconfiguration of analysis engine is supported by the custom
flow controller implementation.
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Figure 5.3 GUI components that display RGB and depth sensor messages of the topic
/kinect_head/rgb/image_color and /kinect_head/depth_registered/image. The pic-
ture shows the field of view of the RP2 robot in the reference kitchen while the PR2
looks into the fridge.

In UIMA, unstructured data is collected in – so called – sofas (subject of analysis). Each sofa is
intended to be a different view on the same data. RoboSherlock uses multiple sofas including a
sofa that represent the RGB color, depth and point cloud as seen from the robots point of view.
Additionally, RoboSherlock uses some sofas for custom UIMA types (UIMA has an extendible
type system).
The set of all sofas is managed by a container component that is called CAS. The CAS provides
analysis engines access to each of the registered sofa.
The results of analysis engines is written to sofas in the CAS. In the control procedure, the
execution of analysis engines is coupled with an adapter component that reads the results from
the CAS in order to apply them to model instances. In order to be able to monitor the perception
process, the GUI of this framework contains a monitoring component for the CAS.

The CAS contains multiple sofas and each sofa contains typed feature data (the result of analysis
engines). The most relevant sofas are dedicated to the sensory input of the system (RGB, depth,
point cloud) and to the representation of the scene from the current point of view of the robot.
Recognized objects are attached to the scene sofa. In order to monitor the perception procedure
it is desirable to be able to view the content of the CAS dynamically during execution of the
perception control procedure. For that purpose, the framework provides a set of visualization
components for features in the CAS. Figure 5.4 shows the visualization components.

Internally, some of the analysis engines require an active Robot Operating System (ROS) message
server. The ROS message server is used in order to expose the state that was perceived by sensors
of the PR2 robot to the UIMA framework. ROS follows the publish-subscribe design pattern:
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Figure 5.4 CAS visualization user interface. On the left: A GUI component that visualizes point
clouds in the CAS; On the right: A GUI component that visualizes recognized objects.
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Subscriptions of particular topics are used to notify listeners about new messages. Different
topics are used for different types of sensory input. For example, there are different ROS topics
for the color and the depth as seen from the robots field of view as well as there is a topic for
point clouds where each point corresponds to a point in space as seen from the robots field of
view. A simple GUI for the display of ROS messages was integrated into the control framework
(see figure 5.3).

5.1.3 Control Framework Services

OSGi services support the re-usability of software components: Common functionality can be
encapsulated in services and exposed to other OSGi bundles. Core services of the control frame-
work are used by control related bundles. The most important core services are discussed in the
following listing:

• ConfigurationManager
The core of the configuration management is the OSGi service ConfigurationManager. It
supports loading of configuration resources from bundles. Bundles must use this service in
order to expose their configuration parameters to the OSGi framework. The OSGi frame-
work provides another interface for the notification of listener about configuration parameter
changes (ManagedService). The control framework provides a specialization of the Bundle-
Activator interface that is intended to be used for bundles with configuration parameters
(ConfigurableBundle).
Registered configuration parameters are automatically serialized and exposed to a generic
configuration editor (see figure 5.5). The modular architecture also allows other components
to access and to manipulate configuration parameters of bundles.

• CommandService
The CommandService provides a central registration point for command methods of bun-
dles. Each command method represents functionality of the bundle that is intended to be
exported to other bundles. Command methods are grouped into command environments in
order to avoid name clashes. A command handle for a particular environment and command
can be queried from the CommandService implementation.
The set of default command environment definitions includes an environment dedicated to
the management of bundles and one that is dedicated to the configuration of bundles. Fur-
thermore, there are command environments defined for the manipulation of ontologies as
well as for the management of control knowledge.
Furthermore, there is a GUI component that allows to execute registered commands (see
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Figure 5.5 Generic configuration parameter editor that uses the ConfigurationManager service.
The selection list on the left contains a list of bundles with configuration parameters.

figure 5.6).

• MessageService
The MessageService OSGi service implements the publish-subscribe design pattern. The ser-
vice can be used for communication between bundles. ROS uses the same design pattern
for sensor messages. The MessageService can be used as adapter to the ROS messages:
ROS messages are passed through to subscribers of the MessageService service. Using the
MessageService, subscriptions to ROS topics can be established even if no ROS message
server is running at that particular moment (the service waits for a ROS message server
connection in this case).

5.2 Control Rules

In this ontology-based control framework, control rules are used to select the currently active
strategy of control components. Furthermore, there are control rule groups for the initialization
of the control procedure and for rules that are supposed to be activated at the beginning of each
frame.
Rules are generically defined as a set of rule components and parameters. Each component has
a scope and a value. Usually, rules can have two different component scopes: Conditions and
consequences.
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Figure 5.6 The console is a graphical user interface for the CommandService OSGi service. The
picture shows an interaction with the ConfigurationManager service.

The core component of the control procedure only declares the interfaces for rules. Rule imple-
mentations can be dynamically added and removed from the control component. This is achieved
by registration of OSGi services: Each rule implementation must register a typed rule service at
the OSGi framework. Furthermore, multiple concurrent rule implementations can be registered
at the same time.
Rule implementations must implement a rule factory interface (HykonRulesFactory) that is used
to instantiate the rules. As for the control knowledge, acquisition and application of control
rules is strictly separated: Rule factories are used to instantiate implementations of the Hykon-
RulesKnowledgeBase interface and of the HykonRulesSession interface. The HykonRulesKnowl-
edgeBase interface is used for the acquisition of rules and the HykonRulesSession interface is used
for the application of rules. HykonRulesKnowledgeBase is a container for compiled rules that
allows to dynamically add and remove rules. Finally, HykonRulesSession provides the interface
for the activation (firing) of rules (i.e., the checking of rule conditions and the execution of rule
consequences).

Internally, the control component uses the proxy design pattern in order to hide if particular
rule factories are registered or not (rule factories can dynamically be registered and unregis-
tered because they are implemented as OSGi bundles). This allows serialization of rules even if
the corresponding bundle that exposes the particular HykonRulesFactory implementation is not
loaded.

Note that the generic rules interface is intended to support later integration of a constraint
network into the control framework.
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Figure 5.7 UML diagram that shows the HykonDroolsFactory implementation of the Hykon-
RulesFactory interface.

5.2.1 Drools Control Rules

The control framework currently provides only one rule implementation that is based on Drools 6.
Drools provides an unified and integrated platform for rules, work flow and event processing. It
is implemented in the Java programming language and it is integrated seamless in the control
framework. The class hierarchy of the drools rules service implementation is shown in figure 5.7.

Drools collects a set of rules in different named rule packages. Rule packages can include static
methods of Java classes as well as they can declare global variables of Java types. This is used in
order to give rules access to functionality that is implemented in the Java programming language.
Model concepts and model instances are asserted as facts into the working memory of the drools
session. The asserted facts can be used in conditions of rules. For example, rules can check for
an instantiation of a particular model concept with particular specializations (e.g., the dominant
color is red).
A rule is defined by a set of configuration parameters, conditions and consequences. The most
important configuration parameters are the rule group (grouping of rules in different contexts),
the activation group (only a single rule of particular activation groups can be activated) and the
saliency (the rule priority).

The control framework dynamically generates source code for drools rules and drools dynamically
compiles the generated rules. Furthermore, the control framework supports to use a Domain
Specific Language (DSL) in conditions and consequences of rules (see next section).

6http://drools.jboss.org/
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5.2. CONTROL RULES

Figure 5.8 DSL-based rule editor. The editor displays a strategy selection rule (the agenda
group is set to strategy) that is activated when there is an instance of the Annotation
model concept with unspecified attributes. The consequence of the rule activates the
strategy Annotation-Phase.

Domain Specific Language (DSL) Expert knowledge about the syntax and the control
framework is required in order to write rules. This can be relaxed by a Domain Specific Language
(DSL) that hides the sophisticated syntax of drools rules from the knowledge engineer. A term
in a DSL definition contains a natural language pattern (with placeholders) and a mapping to
drools rules syntax. In the control framework, rules can contain instantiations of DSL patterns
(i.e., the placeholders are replaced with concrete values) in conditions and consequences of the
rule. Furthermore, it is supported to dynamically register DSL definitions for drools rules.

The core of the drools rules service defines a DSL that is an interface to model concepts and
model instances. It allows conditions to check for the existence of model instances with particular
specializations and it allows consequences to execute Specialization, Parametrization, Relation
and Fusing operations. The control core adds another DSL definition that is used for the selection
of strategies. For that purpose, control components (called runtimes) are asserted as facts to the
drools session. These facts can be used to access the active strategy instantiation (called stage)
and they can be used to select the currently active stage. The formulation of control rules is
supported by an rule editor that allows to formulate rules as a composition of DSL terms. The
editor is shown in figure 5.8.
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Figure 5.9 UML diagram that shows the ControlDescriptor and the ControlRuntime interfaces
that are used for the acquisition and the application of control knowledge.

5.3 Acquisition of Control Knowledge

The control architecture consists of a core component that is implemented as a container for mul-
tiple other control components. Each of the control components is separated into descriptor and
runtime. The control descriptor is used during acquisition of control knowledge and the control
runtime is used during application of control knowledge. Each control descriptor has a custom
set of control strategies, control rules and overwrites for agenda processing methods associated
to it. Additionally, a serialization interface must be implemented by control descriptors. Control
runtimes can be started and stopped. The core runtime is responsible for the management of
component runtimes. All component runtimes are started and stopped together with the core
runtime. Furthermore, the core runtime contains the root agenda. All component runtimes
inherit the agenda items from the root agenda. The purpose of component runtimes is to process
items of the agenda view that they inherited from the core component. The architecture is shown
in figure 5.9.

The control framework provides a GUI for the acquisition of control knowledge that is intended
to be used by knowledge engineers. There are different GUI components for the acquisition of
focusing knowledge (agenda focus patterns; see figure 5.10), ordering knowledge (agenda selection
criteria; see figure 5.11) and processing knowledge (control flows; see see figure 5.12). For more
details on these components of the control framework see section 4.4.1.1 (focusing knowledge),
section 4.4.2 (ordering knowledge) and section 4.4.3 (processing knowledge).
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Figure 5.10 User interface for the acquisition of focusing knowledge. The picture shows an
agenda focus that selects all agenda items for the Parametrization operation of the
Annotation concept and all items for the has-annotation relation of the Cluster
concept. All other agenda items are ignored.

Figure 5.11 User interface for the acquisition of ordering knowledge. The ordering knowledge
is expressed as prioritized list of agenda selection criteria. For example, the selec-
tion criterion 5 is a agenda item pattern selection criterion. It prefers all Relation
operations over other operations.
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Figure 5.12 User interface for the acquisition of processing knowledge. Each strategy contains
a collection of flows (top left) and each flow defines an activation pattern (bottom
left) and a sequence of agenda processing methods (top right). Finally, each method
can be configured by a set of parameters (bottom right). The picture shows a flow
that is activated by Parametrization operations for the attribute timestamp.

5.4 Application of Control Knowledge

The application of control knowledge is driven by agenda processing methods. It is possible to
dynamically register agenda processing methods using the OSGi service interface. The control
core defines the service interface — AgendaProcessing – that must be implemented by custom
agenda processing methods. The service provides access to information about the agenda pro-
cessing methods that are supported by the service.
The AgendaProcessing service interface follows the factory design pattern: It is an interface for
the creation of descriptors and runtimes of the agenda processing service. As usual, descriptors
are used during acquisition of control knowledge and runtimes are used during application of
control knowledge.

The acquisition part of the agenda processing service allows the global configuration of methods.
The global method configuration is applied for runtimes of the agenda processing service when
they are initialized.
Each agenda processing runtime is started before it is used and stopped when it is not used
anymore. The purpose of agenda processing runtimes is to process agenda items with one of the
methods that is provided by the service. Additionally, the service allows dynamic configuration
of agenda processing methods.
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Figure 5.13 UML diagram that shows the CoreAgendaProcessing implementation of the Agen-
daProcessing interface.

Figure 5.14 Strategy monitoring user interface that shows the selection of control strategies,
control flows and agenda processing methods. The user interface allows to start,
stop and pause the control process as well as it allows to process a single strategy,
flow and agenda processing method.

The core of the control framework only implements a core agenda processing service that imple-
ments common functionality like the parametrization of attributes with an user defined value.
This architecture is illustrated in figure 5.13.

The user interface of the control framework supports monitoring of the control process. Validation
of control knowledge is simplified by this user interface because the knowledge engineer has the
possibility to start, to stop and to pause the control process at any point (see figure 5.14).
Additionally, the agenda of different control stages is shown to the knowledge engineer (see
figure 5.15).
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Figure 5.15 Agenda monitoring user interface that shows a prioritized list of agenda items for a
particular stage of the control procedure. Additionally, this interface can be used by
the knowledge engineer to manually process agenda items (using the user question
agenda processing method). The priority column represents the estimates of agenda
selection criteria.
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Chapter 6

Empirical Investigations

In this chapter, it is investigated how well the perception control framework performs as a top-
down attention mechanism. The evaluation is based on real data that was gathered from the
sensors of the PR2 (see section 2.2.2) in the reference kitchen (see section 2.2.1).

In section 6.1, modalities of the empirical investigations are discussed. The validation methods
which are used in the empirical investigations are described in this section. Furthermore, system
parameters with influence on the attention mechanism are identified and discussed. Finally, the
acquisition of the training data for the Bayes’ classifier (see section 4.4.3) is discussed in this
section.

The classification of recognized objects is an important aspect for visual search tasks. Such tasks
can only be fulfilled when the control mechanism is able to identify one of the recognized objects
as task entity. The perception control framework uses a Bayes’ classifier that uses the outcomes
of perception methods as feature vectors. For the success of the perception control framework
in visual search tasks, it is important that the Bayes’ classifier is able to reliably predict the
types of recognized objects. Additionally, the framework uses a selection method for control
decisions that is inspired by computational attention (see section 4.4.2.3). The method uses the
classifier in order to prefer recognized objects with annotations which are common for one of
the task targets. The Bayes’ classifier is investigated empirically in section 6.2 in order to make
sure that it is suitable for the classification of kitchen items in a small validation domain. This
chapter continues with an investigation of the influence of system parameters on the perception
control framework in section 6.3. For example, the prioritization of features which are used for
classification is such a system parameter. The objective of the experiments which are discussed
in section 6.3 is the justification of a standard configuration for following validation experiments.
Finally, the perception control framework is investigated for varying tasks in reference scenarios
(see section 2.3) in section 6.4.
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6.1 Experiment Modalities

In this section, the modalities for the empirical investigations in this chapter are described. The
validation is based on methods which can be used to investigate particular properties of the
perception control framework and its components. The set of validation methods which are used
in this chapter is discussed in section 6.1.1. The experiment procedures are described in section
6.1.2 followed by a description of system parameters in section 6.1.3. Finally, the acquisition of
the training data that is used for the validation of the perception control framework is discussed
in section 6.1.4.

6.1.1 Validation Methods

Many computational attention systems are evaluated from a psychophysical perspective by com-
paring the results with ground-truth eye fixation data that was gathered using an eye tracking
device. From a technical perspective, computational attention systems can be evaluated based
on their usefulness in applications. The psychophysical accuracy of attention systems in technical
domains (such as mobile robotics) is not necessarily important for the success of the computa-
tional attention mechanism in a particular application (e.g., as a front end for object recognition).

For top-down attention systems, the current task is clearly specified and validation methods can
easily determine if a task target is selected by the perception control framework or not (hit rate).
Note that the attention methods are not responsible for the recognition of objects. They can only
be used to prefer particular regions, objects and features. For the object recognition, a naive
Bayes’ classifier is used which can be evaluated in terms of detection rate and rejection rate.
Additionally, this classifier is used in one of the selection methods in order to support selection
based on similarity to task entity classes.

Hit Rate In the annotation phase, each control decision specializes aspects of recognized
objects. A hit is defined as a control decision that specializes the subject of the current task and
a miss is defined as a control decision that specializes a model instance that is not subject of the
current task. In the following, let CH denote the number of control decision hits and let CM
denote the number of control decision misses. The hit rate ϕhit ∈ R can be written as:

ϕhit =
CH

CH + CM
(6.1)

Analogues, the miss rate ϕmiss ∈ R can be written as:

ϕmiss =
CM

CH + CM
(6.2)
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The objective of selection methods is to reduce the overall number of control decisions which are
needed to fulfill a visual search task. Assumed that a task is fulfilled, a low hit rate indicates
that only few features were needed for the detection of the task targets. Furthermore, a low
number of control decisions (compared to the number of possible decisions) indicates that the
selection methods are able to concentrate the perception methods on recognized objects based
on task demands. Note that the number of control decisions is maximal for tasks which cannot
be fulfilled because there is no mechanism implemented that is able to stop the visual search
early without positive result (i.e., the perception is controlled so that it looks at each detail in
such cases). Thus, only fulfilled tasks are considered in this chapter.

NSS Score The hit rate does not take into account the number of recognized objects. The
number of recognized objects has influence on the hit rate because the number of possible control
decisions is proportional to the number of recognized objects. In order to validate that the
methods perform better then by random chance, the NSS score (which is used for the validation
of many attention systems – see section 3) is adapted for the scope of this thesis.

Let D = {D0, . . . , Dn} be the set of possible control decisions with Di = 1 for hits and Di = 0

misses. These values represent the “saliency” of the control decisions. The mean µD over all
possible control decisions can be written as:

µD =
1

n

n∑
i

Di (6.3)

A high mean value (bigger then 0.5) indicates that most possible control decisions are hits while
a low mean value (smaller then 0.5) indicates that there are more possible control decisions which
are misses.

The variance σD over all possible control decisions can be written as:

σD =
1

n

n∑
i

(Di − µD)2 (6.4)

The variance represents the balancing between hits and misses. A low value indicates that
the selection is dominated by either hits (high mean) or misses (low mean) while a high value
indicates that hits and misses are balanced.

Let D′
=
{
D

′

0, . . . , D
′

m

}
⊆ D be the set of selected control decisions. The NSS score is defined

as the average of normalized saliency over all selected control decisions. For the normalization,
each response is transformed to have zero mean and a unit standard deviation. The NSS score
ψNSS can be written as:

ψNSS =
1

m

m∑
i

D
′

i − µD

σD
(6.5)
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ψNSS = 0 indicates that the selection method does not perform better then by random chance
because the average saliency of selected control decisions is not higher then the mean saliency
over all possible control decisions. On the other hand, values greater then zero indicate that the
saliency of selected control decisions is higher then the average saliency over all possible control
decisions (i.e., a selection that is better then by chance).

Pruning Rate The pruning rate ϕprune measures the amount of unconsidered control deci-
sions. Let n be the number of selected control decisions and let m be the number of all control
decisions that can be performed for a particular set of objects. The pruning rate can be written
as:

ϕprune =
m− n
m

(6.6)

Detection and Rejection Rate The classification based selection and processing methods
can be validated in terms of detection rate. The detection rate measures the rate of correct
classifications (true positives) over the number of training samples for the target class (true
samples). This does not take into account how the methods perform for training samples of
other classes (false samples). The rejection rate measures the rate of correct rejections (true
negatives) over the number of false samples. This is illustrated in following table:

Positive Classification Negative Classification

True Sample True Positive (TP ) False Negative (FN)
False Sample False Positive (FP ) True Negative (TN)

The detection rate ϕdet can be written as:

ϕdet =
TP

TP + FN
(6.7)

ϕdet = 1 indicates perfect detection (i.e., every true sample is correctly classified) while lower
values indicate that there are rejected true samples.

Analogues, the rejection rate ϕrej can be written as:

ϕrej =
TN

TN + FP
(6.8)

ϕref = 1 indicates perfect rejection (i.e., every false sample is correctly rejected) while lower
values indicate that there are false samples which are incorrectly classified as the target class.

AUC Score Detection and rejection rate depend on the classification threshold τ . The clas-
sification threshold determines the minimum confidence that is required in order to accept a
classification. All classifications are accepted for τ = 0 while only classifications with maximum
confidence are accepted for τ = 1.
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The ROC (see section 3) curve can be obtained by plotting the the detection rate ϕdet against
the false positive rate 1 − ϕrej for different classification thresholds. The area under this curve
is the AUC score ψAUC . ψAUC = 1 indicates perfect prediction while ψAUC = 0.5 indicates
that the model does not perform better then by random chance. The classification threshold is
a sensitive system parameter of the perception control framework because visual search targets
are identified based on the outcomes of a classifier.

6.1.2 Experiment Procedure

If not stated differently in the experiment description, the experiment procedure is as follows:
Initially, the description of the semantic map is parsed and model concepts are instantiated for
each entity in the semantic map (e.g., the kitchen table). Furthermore, the task description is
parsed and model concepts are instantiated for each task entity. The task description contains
additional knowledge about task entities such as the color of the object or the location of the
object (i.e., a spatial relation to a semantic map entity).

Real data that was gathered from the sensors of the PR2 in the reference kitchen (see section 2.3)
is used for the validation. The sensory input data initiates the clustering perception procedure
which is reliable when the objects of interest are located on top of a supporting plane such as
the top of the kitchen table. For the validation of the perception control framework, samples
are only used if the clustering result is acceptable (other samples are manually removed from
the validation sample set). The clustering procedure is also controlled by the proposed percep-
tion control framework but this procedure is not relevant for object-based attention because an
object representation is only available after clustering. Thus, the validation concentrates on the
annotation and classification phase.

The annotation phase is initiated by the instantiation of model concepts which correspond to
recognized kitchen items. The subject of the annotation phase is the specialization of the recog-
nized objects (i.e., computing annotations for the recognized object). The first attended object
is selected randomly and the attention shifts based on control decisions in the following. The
classification phase is activated as soon as the confidence for a particular object classification
exceeds the classification threshold. Finally, model instances which correspond to recognized ob-
jects are integrated into task entities after classification if the types are equal and attributes and
relations are compatible. The procedure terminates when each of the task entities is associated
to a recognized object.

For the validation of the perception control framework, experiments are divided as follows:

A The first class of experiments is dedicated to the investigation of different annotations and
their influence on classification. The validation of the suitability of annotations for classifica-
tion is separated from the validation of selection methods. In these experiments, no selection
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methods are used and the only feature of recognized objects is the investigated annotation.
The validation samples (see section 6.1.4) are divided into training set ( 2

3 of all samples)
and testing set ( 1

3 of all samples). The training samples are used to train the probabilistic
model of the Bayes’ classifier. In these experiments, the testing samples are successively
processed for each of the validation object classes. The investigated annotation is computed
for each sample and the recognized object is classified based on this feature in the next step.
For the validation, the classification results (TP ,TN ,FP and FN) are logged in order to
compute the detection rate and the rejection rate for a particular classification threshold
and validation object class. The classification threshold is varied as follows: 0.0, 0.1, 0.2, . . . 1
(i.e., 10 different classification thresholds).

B The experiments of this class are dedicated to the investigation of different system param-
eters of selection methods and their influence on the NSS score of the perception control
framework in different reference scenarios (see section 2.3). The set of annotations which
is used for these experiments is defined in section 6.2.5. In this class of experiments, only
the investigated selection method is considered by the control framework. Thus, the se-
lection of the next control decision only depends on the investigated selection method and
system parameter. In these experiments, the reference scenarios are successively processed
and control decisions are logged for later investigation. The experiment terminates as soon
as the classification confidence of the target object exceeds the classification threshold. The
investigated parameter is varied for each of the reference scenarios in order to examine the
influence of this parameter on the NSS score of the investigated selection method.

C The last class of experiments is dedicated to the investigation of the NSS score of the
perception control framework with varying tasks in different reference scenarios (see section
2.3). The set of annotations, the set of selection methods, the prioritization of selection
methods and system parameters which are used for these experiments are defined in sections
6.3.4 and 6.2.5. On the top level, these experiments are repeated for all visible objects as
targets for the visual search task. Furthermore, the experiments are repeated with different
expected annotations for the task entities (i.e., knowledge about the annotations of task
entities). The parametrization of task entities is limited to the Color Ratio annotation (i.e.,
search for a particular color) and the Goggles annotation (i.e., search for a particular label).
Finally, the kitchen table is segmented into border and center area in order to represent
additional knowledge about the spatial location of task entities. The experiment is repeated
for tasks where the spatial location of task entities on the kitchen table is known in advance.
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6.1.3 System Parameters

In this section, different system parameters with influence on the NSS score of the perception
control framework are identified and described. Additionally, the default values which are used
for the validation are justified for some parameters in this section. Appropriate values for other
system parameters are empirically investigated in section 6.3.

Classification Features Classification methods are used in the perception control framework
in order to estimate the probability that a recognized object belongs to a object class of an task
entity (i.e., the visual search target class). The classification relies on a set of features which are
obtained by perception methods of RoboSherlock (see section 2.2.3).

The set of considered annotations is as follows:

• Semantic Size:
This feature roughly divides objects into small and big objects based on the maximum dis-
tance between points which belong to the object. Thus, the semantic size is a nominal
feature. This feature might be useful to distinguish between cutlery such as spatulas and
larger kitchen items such as corn flakes packages.

• Semantic Shape:
This feature roughly divides objects into different basic shapes such as flat, box, round or
cylinder. Thus, the semantic shape is a nominal feature. This feature might be useful to
distinguish between boxy kitchen items such as a milk package and round kitchen items
such as a pancake maker.

• Color Ratio:
The color of recognized objects is decomposed into 6 channels: blue, yellow, red, green, white
and black. The color ratio (i.e., the number of channel responses over the number of pixels)
is computed for each of the channels. Thus, the color ratio feature is a vector of 6 continuous
values between 0 and 1. It is expected that this feature is useful for the classification of
objects with strong dominant colors such as the pancake maker.

• Goggles:
The Goggles web service is able to provide different information for a particular ROI that
corresponds to a recognized object. The information may include visible text and the com-
pany name for a visible company logo. Thus, the Goggles feature is a string feature and
recognized objects may be annotated with multiple Goggles features. This feature might be
useful for the classification of textured objects with text and company logos such as milk
packages and ice tea packages.
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• LINE-MOD:
The LINE-MOD feature is the label of the class with highest classification confidence ac-
cording to the LINE-MOD classification algorithm. Thus, this feature is a nominal feature
of all possible class labels. The LINE-MOD classification algorithm might work well for
untextured objects such as pancake makers and cups.

The set of annotations is empirically investigated in section 6.2.
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Classification Threshold The Bayes’ classifier relies on a classification threshold τ that is
used in order to determine if a particular classification should be accepted or rejected. Each
classification option has a corresponding confidence. Classifications are accepted if the corre-
sponding confidence is higher then the classification threshold. In the scope of this thesis, the
classification threshold is a sensible system parameter because it has influence on the success of
the control framework for visual search task. The classification threshold is empirically investi-
gated in section 6.2.

Preference of Novel Objects Initially, no annotations are attached to recognized objects.
The resulting classification threshold is very low. This may result in a concentration on the first
attended object because annotations enhance the classification confidence compared to objects
without annotations. The control framework allows to define a constant classification confidence
for objects without annotations. For the validation, the classification confidence of novel objects
is set to 0.3. Thus, novel objects are preferred as long as the classification confidence of other
objects does not exceed this threshold.

Edit Distance Weight The task entity similarity method (see section 4.4.2.3) estimates the
minimum similarity to task entities based on the edit distance between model instances and
the confidence of the Bayes’ classifier. The edit distance dedit (see section 4.4.2.2) is used to
prefer recognized objects with parametrization similar to task entities. The task entity simi-
larity method uses a weight parameter ω in order to weight the edit distance against the task
classification confidence c:

task-similarity = ωdedit + (1− ω)c (6.9)

For ω = 0, the parametrization of task entities is completely ignored and only the object classes
are considered. On the other hand, the edit distance is not able to enhance parameters which
are discriminative for the object class. Thus, the weight should be chosen so that both aspects
are reflected in the task similarity estimate. The edit distance weight parameter is investigated
in experiment B1 (see section 6.3.1).

Minimum Task Relation Similarity The task entity similarity method selects control de-
cisions (e.g., relation decisions) based on the edit distance between model instances and the
confidence of the Bayes’ classifier. The method allows to define a minimum similarity (smin)
for relation decisions when the corresponding relation is specified in the task description. For
example, knowledge about the color of task targets is attached to the task entity using the
has-annotation relation. In this case, the smin yields in a preference of relation decisions which
are used to annotate the recognized object with the visible color ratio. On the other hand, the
minimum similarity of task relations should not dominate the edit distance and the classifica-
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tion confidence in all cases in order to allow to concentrate on a particular object before this
annotation is computed for each visible object.

Relation Weighting The transition cost of paths in the relational task distance approach is
based on an user defined weighting for relations. It is possible to define individual weights for
the concept graph and the instance graph. The set of used relations is as follows: is-a relation
(defines the taxonomy of model concepts), contains relation (used to attach task entities to the
instantiation of the task concept – see section 4.3), located-at relation (defines the spatial location
of recognized objects) and has-annotation relation (used to attach annotations to recognized
objects). Taxonomy edges are only added to the concept graph. Thus, the taxonomy weight for
the instance graph can be set to ∞. The has-annotation relation augments an object. Thus, it
is plausible to assume a transition cost of 0.0 for this relation. Additionally, a transition cost
of 0.0 can be assumed for the contains relation because it is always used for relations with task
entities. Finally, the located-at relation expresses a stronger semantic relation between objects
then the taxonomy.

Connections via the concept graph represent weaker semantic relations then connections in the
instance graph. Thus, the transition cost should be increased in the concept graph compared
to the instance graph. For the validation, the concept graph is completely ignored because
recognized objects are always connected directly to a task entity (i.e., the kitchen table). In order
to be able to obtain different distance estimates for recognized objects, a relation is introduced
that represents spatial pooling on the table. The table is roughly segmented into border area
and center area and special relations (at-border and at-center) are used to represent the spatial
position of objects on the table. For the spatial pooling, a transition cost of ∞ is used for the
located-at relation because it can not distinguish between different objects on the same table.
Finally, the cost of transitions via the at-border relation is set to 0.0 and the cost of transitions via
the at-center relation is set to∞ if the task target is located at the border of the table. Otherwise,
the weight of the at-border relation is set to ∞ and the weight of the at-center relation is set to
0.0.

Selection Methods The perception control framework provides a set of methods which are
dedicated to the selection of control decisions (see section 4.4.2). The framework allows the
combination of different selection criteria. Each criterion can be interpreted as a preference
on particular objects, regions or features. The selection, configuration and prioritization of
selection criteria in the annotation phase has influence on the NSS score of the perception control
framework. The set of considered selection criteria is as follows: Relational task distance method
(see section 4.4.2.1), Task entity similarity method (see section 4.4.2.3), the selection based on
patterns of control decisions (see section 4.4.2) and the selection based on continuity (see section
4.4.2).
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The relational task distance selection method restricts the attention to semantic locations and the
task entity classification selection method restricts the attention to particular object classes and
features. Thus, it is plausible to assign a higher priority to the relational task distance selection
method. The attention methods are the primary selection methods. Thus, the priority of other
selection methods should be lower then the priority of the attention methods. Furthermore, it
is evident that the priority of the continuity selection method must be higher then the priority
of pattern selection methods in order to allow the concentration on modified model instances.
Nevertheless, it is not obvious that the continuity selection method yields in better results.
Finally, the sequence of pattern selection criteria is used to define the ordering of considered
annotations. It is desirable to prefer discriminative annotations (i.e., features with low variance)
in order to quickly exceed the classification threshold.

6.1.4 Acquisition of Training Data

The classification of recognized objects is based on a probabilistic model. The model is learned
based on a set of training samples which are acquired using a RGB-D sensor in the reference
kitchen. Training samples are acquired for each kitchen item that appears in one of the reference
scenarios (see section 2.3). The items are recorded from different view angles because the per-
ception methods may not be rotation invariant (e.g., the Goggles method can only find visible
text). As an illustration, the training samples for corn flakes packages are shown in figure 6.1.
The result of the LINE-MOD method (i.e., the class label) is a feature for the Bayes’ classifier.
Thus, the LINE-MOD method and the naive Bayes’ classifier must use different sets of training
samples.

The set of considered object classes for validation is as follows: Corn flakes package, ice tea
package, milk package, pancake tube, pancake maker, spatula and cups with different colors
(blue, green and yellow). The validation set includes 30 samples from different view angles for
each object class (i.e., in total 210 validation samples).
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Figure 6.1 Training samples for a Kellog’s Corn Flakes package from different view angles.

6.2 Classification Experiments

The main objective of the proposed perception control framework is the focus of attention which
is modeled as a set of selection criteria in the control framework. Visual search tasks require that
the system is able to classify visible objects based on perceived features. Additionally, top-down
attention mechanisms may utilize the knowledge about the statistics of object classes in order to
focus on likely targets. The Bayes’ classifier that is used in the control framework is validated in
this section based on a set of experiments in which the detection and rejection rate is gathered
for a set of training images (see section 6.1.4).

6.2.1 Experiment A1 - Goggles Annotation

In this experiment, the suitability of the Goggles annotation for the classification of the validation
object classes is investigated (the experiment procedure is described in section 6.1.2). The
annotations are used by the task entity classification method (see section 4.4.2.3). Thus, it is
important that the results of the Goggles method are suitable for the Bayes’ classifier that is
used in the selection method.

108



6.2. CLASSIFICATION EXPERIMENTS

(a) Classification results for the corn flakes
package

(b) Classification results for the pancake
maker

Figure 6.2 Sample results of experiment A1.

Assumptions and Experimental Setup In this experiment, no selection methods are used
and the only features which are used for classification are Goggles annotations. Each Goggles
feature is a string that represents the company name, visible text or something else that is visible
according to the Goggles web service.

Hypothesis It is expected that the Goggles feature is not rotation invariant. Thus, it is
expected that the feature values vary for training samples from different view angles and that
the recognition rate is rather low. Additionally, it is expected that the results from different
angles are lexically similar (e.g., a missing word or a wrong letter) and that the Bayes’ classifier
is able to use this lexical similarity for the classification of textured objects such as corn flakes
packages and ice tea packages when the company name or logo is visible (usually the front side
of the package). On the other hand, it is expected that this feature does not perform well for
objects without visible company name or logo such as the pancake maker.

Results The classification based on the Goggles feature is better then by chance for all of
the validation object classes. As expected, the best result is achieved for a textured object:
For cornflakes packages, the classifier achieves a detection rate of 70% and a rejection rate of
100% for a classification threshold of 0.6 (see figure 6.2). The detection rate for other textured
objects is worse then expected. For example, the detection rate of the milk package is at 0.3

for classification thresholds between 0.2 and 0.7. As expected, the detection rate of untextured
objects quickly reaches zero for growing classification thresholds. For instance, the detection rate
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for the pancake maker is at 0.0 starting from a classification threshold of 0.3 (see figure 6.2).
Furthermore, the rejection rate quickly reaches 100% for growing classification thresholds. For
all validation object classes, the rejection rate is at 100% starting from a classification threshold
of 0.3. The results of this experiment are completely listed in appendix B.1.

Figure 6.3 The ROC curve of the classification based on the Goggles annotation.

Discussion The Goggles annotation is more suitable for the classification of textured objects
then for untextured objects because the Goggles service does not often return results for un-
textured objects. The best results are achieved for the corn flakes package because the Goggles
service is able to recognize the company logo for testing samples where the package is visible
sideways and it is able to recognize some text when the front side of the package is visible. This is
not the case for the ice tea package and the milk package. Furthermore, the Goggles service does
not always return results for testing samples where text is clearly visible for a human observer.
For example, it seems like the service has some issues with the font that is used on the ice tea
package. Thus, the detection rate is rather low over all training samples (e.g., about 0.16 for a
classification threshold of 0.6). Nevertheless, the rejection rate is rather high over all training
samples (e.g., about 1.0 for a classification threshold of 0.6) because the service returns empty
results in most cases (which yields in a low classification confidence). Overall, the classification
based on the Goggles annotation is better then by chance (see figure 6.3). Thus, it can be used
by the Bayes’ classifier which is used in the perception control framework.
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6.2.2 Experiment A2 - LINE-MOD Annotation

The LINE-MOD method is able to predict class labels for recognized objects based on set of
training samples (about 20 per object class). The suitability of the LINE-MOD annotation for
the classification of the validation object classes is investigated in this experiment (the experiment
procedure is described in section 6.1.2).

(a) Classification results for the pancake
maker

(b) Classification results for the corn flakes
package

Figure 6.4 Results of Experiment A2.

Assumptions and Experimental Setup In this experiment, no selection methods are used
and the only feature that is used for classification is a class label (nominal feature) that was
predicted by the LINE-MOD method. The LINE-MOD method is trained for the set of validation
object classes based on a set of training samples (about 20 samples per validation object class).
This set of training samples is distinct from the set of training samples that is used to train the
Bayes’ classifier.

Hypothesis It is expected that the LINE-MOD annotation is rotation invariant because it
was trained with samples from different view angles. Thus, the predicted class label should be
consistent for most view angles of the testing samples (contrary to the Goggles method where
the visibility of text and logos depends on the view angle). Furthermore, it is expected that the
predicted class label of untextured objects such as pancake makers or cups can be better used
for classification then the class label of textured objects such as milk packages.
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(a) ROC curve for the Goggles annotation (b) ROC curve for the LINE-MOD annota-
tion

Figure 6.5 Comparison of experiment results for experiments A1 and A2.

Results As expected, the best result is achieved for an untextured object. The classification of
the pancake maker is in fact perfect for the set of testing samples (see figure 6.4) and the detection
rate for cups is about 67% up to a classification threshold of 0.9. Nevertheless, the result of for
the spatula is worse. For the spatula, the detection rate is at 0% starting from a classification
threshold of 0.4. Surprisingly, the detection rate and the rejection rate are rather high for the corn
flakes package (80% detection rate and 100% rejection rate for a classification threshold of 0.9)
and the ice tea package (70% detection rate and 100% rejection rate for a classification threshold
of 0.8). Furthermore, the rejection rate quickly raises for growing classification thresholds. For all
validation object classes, the rejection rate is above 98% starting from a classification threshold
of 0.6. The results of this experiment are listed completely in appendix B.2.

Discussion The LINE-MOD annotation yields in good detection rate (above 60% for a classi-
fication threshold of 0.8) for about half of the validation object classes (pancake maker, cup, ice
tea package and corn flakes package). For other object classes, the rejection threshold quickly
reaches 100% (for classifications thresholds starting from 0.4). The best results are achieved for
the pancake maker where the testing samples can be predicted perfectly up to a classification
threshold of 0.9. This might be related to the consistent shape of the pancake maker from differ-
ent view angles. Surprisingly, the LINE-MOD annotation suits well for the classification of the
ice tea package and the corn flakes package in this validation domain. Actually, the LINE-MOD
method predicts wrong class labels for the ice tea package and the corn flakes package. For the
corn flakes package, the LINE-MOD method predicts the class label that corresponds to the
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(a) Classification results for the spatula (b) Classification results for the milk package

Figure 6.6 Results of Experiment A3.

pancake tube or the class label that corresponds to the milk package most often. For the ice
tea package, the LINE-MOD method predicts the class label that corresponds to the pancake
tube in most cases. These false predictions seem to work well in this validation domain but
it is expected that this is not the case in larger domains. Overall, the classification based on
the LINE-MOD annotation is better then by chance and better then classification based on the
Goggles feature (see figure 6.5).

6.2.3 Experiment A3 - Color Ratio Annotation

In this experiment, the suitability of the SemanticColor annotation (see section 2.2.3) for the
classification of the validation object classes is investigated (the experiment procedure is described
in section 6.1.2).

Assumptions and Experimental Setup In this experiment, no selection methods are used
and the only feature that is used for classification is a color ratio as computed by the Seman-
ticColor method. Color is represented as a 6 dimensional vector of continuous values between 0

and 1 where the dimensions correspond to different color channels (blue, yellow, red, green, white
and black).

Hypothesis It is expected that the classification based on the Color Ratio feature is better
then by chance and that it works similar well for textured and untextured objects. On the other
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(a) ROC curve of the Goggles an-
notation

(b) ROC curve of the LINE-MOD
annotation

(c) ROC curve of the Color Ratio
annotation

Figure 6.7 Comparison of experiment results for experiments A1, A2 and A3.

hand, it is expected that there are more false predictions compared to the Goggles annotation
and LINE-MOD annotations (i.e., lower rejection rate).

Results The overall results of the classification based on the Color Ratio feature are surpris-
ingly good. As expected, the results are similar for textured and for untextured objects. For
example, the spatula can be classified with 70% detection rate up to a classification threshold
of 0.7 (see figure 6.6) and the ice tea package can be classified with 70% detection rate up to
a classification threshold of 0.9. The best result is achieved for the pancake maker where the
detection rate is at 90% for a classification threshold of 0.9. As expected, the number of false
positives is higher for the Color Ratio compared to previously discussed annotations. Neverthe-
less, the number of false positives is still low for classification thresholds above 0.5. For example,
there are only 2 false positives for the pancake maker out of 62 false samples for most tested
classification thresholds. The results of this experiment are listed completely in appendix B.3.

Discussion The Color Ratio feature performs better then expected because the dominant color
is in fact a discriminative feature in the set of validation samples (e.g., all plain yellow objects
in training samples are cups). Thus, the Color Ratio feature is suitable for the classification in
such a small domain. Nevertheless, the feature might be less useful for the classification when
the domain is augmented. The detection rate and rejection rate of the classification based on
the Color Ratio feature depends less on the classification threshold compared to the LINE-MOD
and Goggles annotation (see figure 6.7). The average detection rate lies between 0.6 and 0.9 for
all classification thresholds and the average false positive rate lies between 0.0 and 0.1 for all
classification thresholds. Thus, the feature is suited to be used for classification in this validation
domain.
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Figure 6.8 Classification results of the Bayes’ classifier in comparison to the results of classifi-
cation based on individual features.

6.2.4 Experiment A4 - Bayes’ Classifier

In this section, the suitability of the Bayes’ classifier for the classification of the validation object
classes is investigated (the experiment procedure is described in section 6.1.2).

Assumptions and Experimental Setup In this experiment, no selection methods are used
and the only considered processing method is the Bayes’ classifier. All available features are
considered in this experiment. For each training sample, all selected features are computed.
Thus, the prioritization of annotations is irrelevant for this experiment. The classification phase
is initiated when all annotations are computed and the experiment terminates as soon as the
classification result is computed.

Hypothesis It is expected that the Bayes’ classifier (which combines the outcomes of different
perception methods) outperforms a classification that is based on the outcome of individual
perception methods in terms of detection rate and rejection rate.

Results The overall results of the Bayes’ classifier show that the selected set of features can be
used to to detect objects with a rate of 80% up to a classification threshold up to 0.9 while the
rejection rate is at 100% for classification thresholds above 0.2 (see figure 6.8). The best results
are achieved for the pancake maker with perfect detection and rejection and for the ice package
where the detection rate is at 80% for a classification threshold of 0.9. The worst detection is
achieved for the pancake tube where the detection rate is at 60% for a classification threshold of
0.9. The results of this experiment are listed completely in appendix B.4.

Discussion The results show that the Bayes’ classifier achieves a better detection rate then
classification which is based on individual annotations. The detection rate is always higher then
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Figure 6.9 ROC curve for the Bayes’ Classifier in comparison to the ROC curves for classification
based on individual features.

the detection rate for individual annotations except of compared to the LINE-MOD annotation
with a classification threshold of 0.1. Nevertheless, the detection rate is higher for all tested
classification thresholds above 0.1. Furthermore, the area under the ROC for the Bayes’ classifier
is bigger then the area under the ROC for individual annotations (see figure 6.9). Thus, the trade-
off between detection rate and false positive rate is best for the Bayes’ classifier compared to
individual annotations.

6.2.5 Classification Parameters

It is expected that evidence which discriminates the validation object classes from each other
enhances the recognition rate of the Bayes’ classifier. In experiments A1, A2 and A3, it was
investigated how well particular annotations can be used for the classification in the validation
domain. The selection of the next control decision is influenced by the outcome of the Bayes’
classifier. Thus, the selection of annotations is relevant for the NSS score of the perception
control framework. All discussed annotations can be used to predict validation object classes
better then by chance and are selected by default to be used in the Bayes’ classifier. It is expected
that the combination of the LINE-MOD feature (which works well for untextured objects) and
the Goggles annotation (which works only for textured objects) enhances the overall detection
rate of the Bayes’ classifier. Additionally, the Semantic Size and the Semantic Shape are selected
by default to be used by the perception control framework for following experiments. The
experiments showed that the classification threshold should be chosen between 0.6 and 0.9 in
order to obtain a good trade-off between detection rate and rejection rate. If not stated different,
the classification threshold is set to 0.75 for following experiments.
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Figure 6.10 Pruning results for a visual search for a cornflakes package in the default scene
where only the target class is known (left), where the label of the package is known
in addition (middle) and the pruning results for the spatula in the default scene
where the color of the spatula is known (right).

6.3 Configuration Experiments

The class of configuration experiments is dedicated to the discussion of suitable system param-
eters. Different aspects which are relevant for the hit rate of the perception control framework
are investigated empirically in following sections.

6.3.1 Experiment B1 - Edit Distance Weight

The task entity classification selection method (see section 4.4.2.3) depends on an user defined
weighting between classification confidence and edit distance between model instances. The
weighting is expressed by the edit distance weight parameter dedit ∈ [0, 1].

Assumptions and Experimental Setup In this experiment, the only considered selection
method is the task entity classification selection method. The edit distance weight parameter is
varied as follows: 0.0, 0.1, . . . 1.0 (i.e., the experiment is repeated for 10 different values of dedit)
and the minimum task relation similarity smin is set to 0.6.

Hypothesis It is expected that dedit has no influence on the pruning of control decisions
for visual search tasks where only the target class is known. For dedit = 1.0, it is expected
that the selection is not better then by random chance for tasks where only the class is known.
Furthermore, it is expected that additional knowledge about task entities yields in a higher prune
rate compared to task without additional knowledge about task entities. Finally, it is expected
that the selection of control decisions is better then by chance in each case.
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Figure 6.11 NSS score results for a visual search for a cornflakes package in the default scene
where only the target class is known (left), where the label of the package is known
in addition (middle) and the pruning results for the spatula in the default scene
where the color of the spatula is known (right).

Results The results show that the control procedure is able to prune about 80% of all control
decisions for the cornflakes package in the default scene (see figure 6.10). About 55% of all hit
decisions and about 75% of all miss decisions are not selected by the control framework. On
average, 2.8 hits are needed in order to identify the corn flakes package. The NSS score shows
that the selection of control decisions is better then by chance for weights below 1.0 when no
additional knowledge about the corn flakes package is available. The results of visual search for
a labeled corn flakes package in the demo scene are similar to the results without additional
knowledge up to a edit distance weight threshold of 0.7. Both, pruning rate (about 90%) and
NSS score (between 2 and 3) are higher for edit distance weights above 0.7 when the label of the
cornflakes package is known. The results of visual search for a black spatula in the default scene
are worse then the results for cornflakes packages. About 70% of all control decisions were not
selected in the control process. The selection does not benefit from the additional information
about the color of the object up to a edit distance weight threshold of 0.9 where the pruning rate
exceeds 80%.

Discussion This experiment shows that additional knowledge about annotations of target
objects can enhance the pruning rate and the NSS score of the perception control framework.
Knowledge about the annotation of the search target does not yield in a improvement of the
rejection rate for edit distance weights below a threshold. The threshold is produced by the
preference of relations which are specified in the task (minimum task relation similarity). The
value of smin is set to 0.6 for this experiment. Thus, control decisions for relations which are
specified in the task are preferred over all control decisions with a task similarity below 0.6.
For the cornflakes package, the task similarity exceeds 0.6 for edit distance weights above 0.7.
For the spatula, the task similarity exceeds 0.6 for edit distance weights above 0.9. This means
that the distance between the actual annotation and the annotation which is defined in the task
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Figure 6.12 The influence of the smin on the pruning rate of the perception control framework
for the cornflakes package in the default scene. The label of the cornflakes package
is known in advance. From left to right, the images show the result for dedit =
0.4, dedit = 0.5 and dedit = 0.6.

description is larger for the spatula then for the cornflakes package (i.e., the specified label is a
better match for the outcome of the Goggles method then the specified color for the outcome
of the Color Histogram method). Furthermore, the experiment shows that the selection is not
better then by chance when dedit = 1.0 and no additional knowledge is available because the
edit distance is the same for all objects in this case. Overall, the edit distance weight should be
chosen below 1.0 so that tasks without additional knowledge can be performed better then by
random chance. Furthermore, the experiment showed that the distance weight should be chosen
above 0.6 because the edit distance is not able to shift away the attention from the relations
which are specified in the task due to the minimum task relation similarity (0.6).

6.3.2 Experiment B2 - Minimum Task Relation Similarity

In the last experiment, the minimum task relation similarity (smin) was set to 0.6. The experi-
ment results showed that the specification of annotations for task entities only yields in a better
NSS score for edit distance weights above 0.6. In this experiment, it is investigated how the
system performs with a fixed edit distance weight below 0.6 and with a varying smin parameter.

Assumptions and Experimental Setup In this experiment, the only considered selection
method is the task entity classification selection method. smin is varied as follows: 0.0, 0.1, . . . 1.0
(i.e., the experiment is repeated for 10 different values of smin). Additionally, the experiment is
repeated for different edit distances weights (dedit = 0.4, dedit = 0.5 and dedit = 0.6).

Hypothesis It is expected that knowledge about annotations of objects yields in better pruning
rate for particular minimum task relation similarity values. Furthermore, it is expected that the
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Figure 6.13 The influence of the minimum task relation similarity parameter on the pruning rate
of the perception control framework for the cornflakes package (left image) and the
spatula (right image) in the default scene for dedit = 0.6. The label of the cornflakes
package and the color of the spatula are known in advance.

range of the best values for smin depends on the uniqueness of the user specified annotation. For
unique values, the range might be wider compared to values with high ambiguity.

Results For the cornflakes search target, the results show that the pruning rate is about
90% for 3 different values of smin (see figure 6.12) This hold true for all tested values of dedit.
Furthermore, the results show that the best values of smin (in terms of NSS score) depend on the
selected value of dedit. The center of the range of best values is at smin = 0.4 for dedit = 0.6 and
at smin = 0.3 for dedit = 0.5. The NSS score is enhanced compared to other samples within the
range of best values for smin. For example, the NSS score is slightly below 2.5 within the range
and between 1.0 and 1.5 for other values of smin. For the spatula search target, the maximum
pruning rate is about 80%. For dedit = 0.4 and dedit = 0.5 there is only a single value for smin

where the best pruning rate is achieved.

Discussion The results for the cornflakes package are better then the results for the spatula
for following reasons: The classification of the cornflakes package is more reliable and the user
specified annotation is more accurate for the cornflakes package. For the cornflakes package,
the task description contains the expected result of the Goggles perception method (the label
“corn flakes”). In this scenario, the outcome of the Goggles method is equal to the label that
was specified by the user in most cases. For the spatula, a color ratio is specified in the task
description that corresponds to a dominant black color. The actual feature outcome of the Color
Ratio method is similar to the user specified feature but not equal (i.e., a low edit distance).
Additionally, the pancake maker has also a dominant black color. Thus, both objects can be
preferred by the edit distance based selection. This yields in lower NSS score and lower pruning
rate for the spatula compared to the cornflakes package. For both objects, best results are
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Figure 6.14 Pruning results of experiment B3. From left to right the results correspond to the
cornflakes package, the ice tea package and the average over all tested object classes.

achieved for dedit = 0.6 and smin values between 0.3 and 0.4 (NSS score is slightly below 2.5 for
the cornflakes package and slightly below 1.5 for the spatula).

6.3.3 Experiment B3 - Prioritization of Annotations

In this section, the influence of the pattern selection method on the hit rate of the perception
control framework is investigated. The pattern selection method is used for the prioritization
of control decisions based on the corresponding annotation (e.g., preference of control decisions
which correspond to the LINE-MODE annotation). Thus, the investigated system parameter in
this experiment is the preference for annotations.

Assumptions and Experimental Setup In this experiment, the investigated selection
method is the pattern selection method. Additionally, the task entity classification method
is used to prefer objects which are similar to task entity classes. The edit distance weight is set
to 0.0 for this experiment so that the edit distance has no influence on the control procedure. The
experiment is repeated with a preference for each of the considered annotations (Color Ration,
LINE-MOD, Goggled, Semantic Size, Semantic Shape).
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Figure 6.15 Overall results of experiment B3. From left to right the results correspond to the
cornflakes package, the ice tea package and the average over all tested object classes.

Hypothesis It is expected that the preference of discriminative annotations yields in better hit
rate because the classification threshold is exceeded with less control decisions. Furthermore, it
is expected that the preference of the Semantic Size and the Semantic Shape annotations yields
in a lower NSS score then the preference of the Goggles annotation, the LINE-MOD annotation
and the Color Ratio annotation. Furthermore, it is expected that the preference of the LINE-
MOD annotation yields in best results in terms of NSS score because it showed best result in
the classification experiments (see section 6.2.2). Finally, it is expected that the Color Ratio
attribute suits well for the pruning of control decisions.

Results As expected, preference of the LINE-MOD annotation yields in best NSS score in this
experiment (see figure 6.15). Overall, the NSS score is at 1.61 for the LINE-MOD annotation
while the NSS score of other annotations is slightly below 1.0. For example, the NSS score is low
for the LINE-MOD annotation when the search target is an ice tea package (0.58). For cornflakes
packages, the preference of the LINE-MOD annotation yields in a hit rate above 60% while the
hit rate is below 50% for the other annotations. Finally, the pruning rate is best for the Color
Ratio annotation (see figure 6.14). In this experiment, the preference of the color annotation
yields in a hit pruning rate of 61% (i.e., 61% of all hits were not selected) and in a miss pruning
rate of 82% (i.e., 82% of all misses were not selected). The result of other annotations is about
20% worse for the hit pruning rate and about 10% worse for the miss pruning rate.
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Discussion In this experiment, the influence of the preference of different annotations on the
NSS score and the pruning rate was investigated. On average, the annotations perform very
similar to each other. The NSS score is slightly below 1.0 for all annotations except of the
LINE-MOD annotation. This result is dominated by the outstanding NSS score for the LINE-
MOD annotation when the search target is a cornflakes package (the hit rate is above 50%
and cornflakes packages are identified with 2 decisions on average). For other search targets,
the LINE-MOD annotation yields in a NSS score that is about the average NSS score of the
considered annotation. Thus, the LINE-MOD annotation can safely be preferred over other
annotations if the maximization of the NSS score is the objective. Additionally, the Color Ratio
annotation showed good results. It is the second best annotation in terms of NSS score and the
best annotation in terms of hit pruning rate and miss pruning rate. This is the case because there
are not much ambiguities for the color of the validation object classes. One of the ambiguities
is the black color of the spatula and the pancake maker. Additionally, the dark blue cup and
the dark green cup may appear as black to the Color Ratio perception method. This yields
in the lowest NSS score for the Color Ratio when the search target is a spatula (i.e., many
objects with similar color were considered). Nevertheless, the overall NSS score is slightly above
average for the Color Ratio annotation. Summarizing, the experiment showed that it might
be desirable to prefer the LINE-MOD annotation over the other annotations. Furthermore, it
might be desirable to prefer the Color Ratio annotation over all other annotations except of the
LINE-MOD annotation.

6.3.4 System Parameters

The task similarity method depends on two system parameters: The edit distance weight dedit
and the minimum similarity smin for relations which are specified in the current task. The edit
distance measures the distance between annotations which are defined in task entities with an-
notations of recognized objects. Objects with low edit distance are preferred. The edit distance
is combined with the classification confidence in order to yield a task similarity value that repre-
sents knowledge about the common appearance of the target object as well as knowledge about
particular annotations of the task target. The weighting factor dedit is sensible for the success of
the attention mechanism because high values yield in ignorance of the classification confidence
while low values yield in ignorance of annotations which are specified in the task. The edit dis-
tance weight parameter correlates with the minimum task relation similarity smin that is used
to prefer annotations which are defined in the task description. Experiments showed that good
results can be achieved with dedit ∈ [0.5, 0.6] and smin ∈ [0.3, 0.4]. In the following, smin = 0.4

and dedit = .6 are used.

The perception control framework provides a selection method that compares agenda items with
an user defined pattern. For the validation of the framework, the pattern selection method was
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investigated in experiment B3 (see section 6.3.3) where the method was used for the preference of
particular annotations. The experiment showed that the preference of the LINE-MOD annotation
yields in the best NSS score results and that the preference of the Color Ratio annotation yields
in the best pruning rate for the tested validation scenarios. Thus, the LINE-MOD annotation
is preferred over all other annotations in the following. Additionally, the color annotation is
preferred over all other annotations. It is expected, that the preference of these features enhances
the NSS score and the pruning rate in some scenarios.

6.4 Control Experiments

In previous experiments, components of the perception control framework and their parametriza-
tion were investigated individually. Based on these experiments, default values of system pa-
rameters were defined and justified in section 6.3.4. In this section, the default parameters are
used for a set of reference scenarios (see section 2.3) with varying tasks in order to investigate
the hit rate for particular tasks in the reference scenarios.

6.4.1 Experiment C1 - The Default Scenario

This experiment validates the perception control framework for the default scene where multiple
objects are visible and visually separated from each other (the experiment procedure is described
in section 6.1.2).

Figure 6.16 The NSS score for the ice cornflakes package (on the left) and the ice tea package
(on the right).

Assumptions and Experimental Setup In this experiment, the default scenario is used
(see figure 2.7) and the number of hits and misses is counted for visual search tasks with varying
knowledge. Knowledge about the common appearance of object classes is used in all cases.
Additionally, the experiment is repeated for tasks where a feature of the object is known in
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advance. For the cornflakes package and the ice tea package, the expected Goggles annotation
is specified in the task description. For both objects a label is clearly visible (i.e., “corn flakes”
and “ice tea”) which is used as the expected outcome of the Goggles perception method. For the
spatula, the dominant color (black) is defined in the task description. Finally, the experiment is
repeated with additional knowledge about the spatial location of objects (i.e., spatial pooling of
the kitchen table).

Hypothesis It is expected that the hit rate is better then a selection by chance and it is
expected that the hit rate is enhanced for tasks where additional information about the task
entity is known (e.g., the color of the entity or the location on the table).

Results For the cornflakes package, the prune rate is between 0.8 and 0.9 for all cases except
for the case where the label of the package is known in which case the prune rate is slightly
below 0.8 (see figure 6.16). Overall, best results were achieved for the pooling technique where
the NSS score exceeds 2.5 (the score is below 2.0 without spatial pooling). The results for the
ice tea package show that the prune rate lies between 0.7 and 0.9 where the best result (0.83)
was achieved for the scenario where spatial pooling is used and where the label of the ice tea
package is known in advance. The NSS score is about 0.6 without spatial pooling and about 1.6

with spatial pooling. Knowledge about the label of the package yields in a slight improvement
for both cases. For the spatula, spatial pooling greatly enhances the hit rate when no color of the
spatula is specified (above 0.7). The prune rate lies between 0.6 and 0.8 for the spatula where
the best results were achieved when the spatial pooling was used.

Figure 6.17 Overall results of experiment C1.

Discussion Overall, the NSS score is above 1.0 for each case which is a good result. It shows
that the selection of control decisions is better then by chance. Thus, the methods that were
used suit well for the scope of computational attention. The prune rate and the NSS score are
generally higher for objects where the Bayes’ classifier can reliably predict the type of the object.
The knowledge about annotations of objects improved the results for the spatula and the ice
tea package but the result for the cornflakes package was worse for this case compared to the
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selection based on the Bayes’ classifier. The main reason for this is that the Bayes’ classifier is
able to reliably identify the cornflakes package based on the LINE-MOD annotation which is
preferred over all other annotations when no spatial pooling is used.

6.5 Summary and Discussion

In this chapter, the proposed perception control framework was validated for a set of reference
scenarios in the kitchen domain. The domain includes a small set of object classes (9) which are
chosen so that the versatility of kitchen items is represented rudimentarily. For example, there
are two objects with a plain black color (i.e., the spatula and the pancake maker). Furthermore,
there are dark cups in the training data. This yields in more ambiguity for the color annotation
of dark objects.

One of the most essential components of this framework is the Bayes’ classifier that is used
to predict the object type based on annotations of the object. It was validated separately in
this chapter in terms of rejection rate and detection rate. The results showed that the Bayes’
classifier can reliably detect the 9 objects of the validation domain (the detection rate was above
0.8 in the experiments). The set of features that is used by the Bayes’ classifier is a system
parameter for the perception control framework. The selection of features has influence on the
attention mechanism because features usually perform good for a subset of the object classes
only (e.g., the Goggles perception method works only for textured objects). Experiments showed
that the LINE-MOD feature should be preferred over the other features so that the number of
control decisions can be reduced. This is due to high confidence that is usually associated to the
outcomes of the LINE-MOD perception method.

The most important selection method that is used in this framework combines the confidence
value of the Bayes’ classifier with a distance estimate based on an user defined weighting. The
distance metric is used in order to estimate the similarity of task entities and recognized objects.
It is important that the influence of the classification confidence and the distance estimate is
balanced so that none of the aspects dominates the other. In this chapter, a good value for
the weight was found based on a set of experiments where the parameter value was varied.
This standard configuration of the control framework was used to investigate the influence of
different types of knowledge on visual search tasks in the default scenario. The spatial pooling
based on relations between instances always enhanced the pruning rate and the NSS score while
additional knowledge about annotations of objects may yield in a worse result when the user
specified feature does not represent the actual outcome of the perception method accurately.
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Conclusion and Perspective

The objective of this thesis was the implementation of a perception control framework which is
able to incorporate the outcomes of multiple knowledge based attention methods for the realiza-
tion of a top-down attention control procedure in the context of mobile robotics. Furthermore,
it was intended to use different types of knowledge about task relevant objects (i.e, the object
class, attributes of the object and relations to other objects). For that purpose, the annotation
phase of the perception procedure was segmented into atomic operations where each operation
corresponds to the computation of an annotation for a particular recognized object. The per-
ception control framework is responsible for the selection, configuration and execution of such
operations. For the control framework, each of the possible operations represents a particular
control decision in the problem solving process. The main objective of the control mechanism
is the reduction of the number of control decisions which are required in order to fulfill visual
search tasks.

Each visual search task defines one particular search target. In the most basic scenario, the
task description only contains information about the type of the object (e.g., “Where is the
cup” or “Where is the milk package?”). Knowledge based focus of attention requires knowledge
about the common appearance of object classes in this case (e.g., the shape of cups). In the
perception control framework, this knowledge is represented in a probabilistic model that is used
by a Bayes’ classifier in order to predict the object class based on annotations of the object.
The overall detection rate of the Bayes’ classifier is between 0.8 and 0.9 and the rejection rate
is between 0.9 and 1.0 for completely specified objects depending on the classification threshold
(see section 6.2). Thus, the predictions of the Bayes’ classifier can be used to reliably identify
objects in the reference scenarios (see section 2.3). Nevertheless, the number of objects in the
validation domain is rather low (only 9 different object classes) and it remains unclear how the
Bayes’ classifier performs for a larger set of validation object classes. The performance of the
classification based selection of control decisions highly depends on how well particular object
classes can be predicted by the Bayes’ classifier. It was shown that the perception control
framework is able to prune away more then 80% of all possible control decisions for objects, such
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as the cornflakes package, where the classifier prediction is reliable (see figure 6.10). Furthermore,
it was shown that the selection of control decisions was better then by chance for objects, such
as the spatula, where the prediction of the classifier is less reliable (around 70% of all decisions
were pruned in the experiment).

It was shown that the perception control framework can utilize knowledge about expected anno-
tations of task targets (e.g., “Where is the yellow cup” or “Where is the boxy milk package?”)
in order to reduce the number of required control decisions for particular scenarios (see section
6.3.1 and 6.3.2). For that purpose, an edit distance metric between model instances was defined.
Basically, the edit distance measures the distance between features of annotations which are
defined by the task entity. The distance between features is computed using common distance
metrics such as the Levenshtein distance [Lev66] for string features. The edit distance estimate
is combined with the classification confidence in order to yield a “task similarity” value that
includes knowledge about the common appearance of objects and knowledge about expected an-
notations of task entities. In section 6.3.1 it was shown that the knowledge about annotations of
the target object can yield in a better pruning rate and NSS score for particular configurations
and scenarios. For the cornflakes package, the pruning rate was improved from about 80% to
about 90% when knowledge about the label on the cornflakes package was used in the control
procedure (see figure 6.10).

Another type of knowledge that can be utilized by the perception control framework in order
to reduce the number of required control decisions for visual search tasks is knowledge about
relations between objects. In the proposed framework, this knowledge can also be represented
in task descriptions for visual search tasks (e.g., “Is there a milk package on the table?” or “Is
there a yellow cup next to the dish on the kitchen table?”). Nevertheless, special methods are
required in order to dynamically infer such relations between visible objects. The RoboSherlock
perception framework provides a method to infer the semantic location (e.g., on top of the
kitchen table) of objects based on the perceived depth and a bounding box that corresponds
to the attended location. It is not possible to infer more complex spatial relations with this
method (e.g., “Is the cup right of the dish?”). In the scope of this thesis, knowledge about
spatial relations between objects is restricted to the spatial pooling technique that is provided
by RoboSherlock . Additionally, for the validation of the control framework, the kitchen table
was segmented into border area and center area in order to allow visual search tasks such as “Is
there a cornflakes package at the border of the kitchen table?”. The knowledge about relations
between objects is represented by a special selection method that computes the semantic distance
between recognized objects and task entities based on the hierarchy of relations between both
objects. The spatial pooling scenario is trivial for this procedure because recognized objects are
directly connected with task entities in this case (i.e., the distance of the path between recognized
objects and task entities is equal to the transition cost of the spatial relation between them).
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Perspective In the scope of this thesis, the perception control framework was investigated with
static recordings of scenes in the reference kitchen. Dynamic scenes and scenes where the robot
navigates were not considered in this thesis because dynamic environments require additional
functionality such as the retraction of control decisions based on a backtracking algorithm (e.g., a
truth maintenance system). Nevertheless, there are interesting scenarios for visual search which
involve navigation of the robot or moving objects such as the guidance of the gaze direction of
the robot. For example, manipulation of the gaze direction could be used in order to gather
sensory data from a slightly different perspective when the classification confidence is slightly
below the classification threshold for the selected object.

In the current implementation, an edit distance metric between instances is used in order to
select control decisions based on knowledge about annotations of the target object. The major
disadvantage of this method is that the user has to guess the outcomes of perception methods.
It is impossible to specify these values exactly in advance because the outcome of perception
methods varies for different frames with the same visible objects. The method works fine as long
as the edit distance between the user specified feature value and the actual feature value is small
but it does not represent the statistics of features accurately. Thus, it is desirable to utilize a
probabilistic approach instead.

Furthermore, it would be interesting to investigate regression methods for the prediction of
feature values. The execution of perception methods can be omitted if the confidence of the
predicted feature value exceeds an user specified threshold.

The implemented control procedure acts as a framework where multiple attention methods can
be combined. In the current implementation, a set of attention inspired methods is used in order
to represent different aspects of knowledge about the current task. It would be interesting to
investigate the control framework for different attention methods such as standard bottom-up
models. The proposed perception control framework can be utilized to investigate the per-
formance of different combinations of attention methods as well it can be utilized to compare
different attention methods with each other.
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Appendix B

Empirical Results

B.1 Experiment A1

Figure B.1 Classification results of the Goggles feature for the corn flakes package.

Figure B.2 Classification results of the Goggles feature for the cups.

139



APPENDIX B. EMPIRICAL RESULTS

Figure B.3 Classification results of the Goggles feature for the ice tea package.

Figure B.4 Classification results of the Goggles feature for the milk package.

Figure B.5 Classification results of the Goggles feature for the pancake maker.
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B.1. EXPERIMENT A1

Figure B.6 Classification results of the Goggles feature for the pancake tube.

Figure B.7 Classification results of the Goggles feature for the spatula.

Figure B.8 Overall classification results of the Goggles feature.
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B.2 Experiment A2

Figure B.9 Classification results of the LINE-MOD feature for the corn flakes package.

Figure B.10 Classification results of the LINE-MOD feature for the cups.
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B.2. EXPERIMENT A2

Figure B.11 Classification results of the LINE-MOD feature for the ice tea package.

Figure B.12 Classification results of the LINE-MOD feature for the milk package.

Figure B.13 Classification results of the LINE-MOD feature for the pancake maker.
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APPENDIX B. EMPIRICAL RESULTS

Figure B.14 Classification results of the LINE-MOD feature for the pancake tube.

Figure B.15 Classification results of the LINE-MOD feature for the spatula.

Figure B.16 Overall classification results of the LINE-MOD feature.
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B.3. EXPERIMENT A3

B.3 Experiment A3

Figure B.17 Classification results of the Color Ratio feature for the corn flakes package.

Figure B.18 Classification results of the Color Ratio feature for the cups.
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APPENDIX B. EMPIRICAL RESULTS

Figure B.19 Classification results of the Color Ratio feature for the ice tea package.

Figure B.20 Classification results of the Color Ratio feature for the milk package.

Figure B.21 Classification results of the Color Ratio feature for the pancake maker.
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B.3. EXPERIMENT A3

Figure B.22 Classification results of the Color Ratio feature for the pancake tube.

Figure B.23 Classification results of the Color Ratio feature for the spatula.

Figure B.24 Overall classification results of the Color Ratio feature.
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B.4 Experiment A4

Figure B.25 Classification results of the Bayes’ classifier for the corn flakes package.

Figure B.26 Classification results of the Bayes’ classifier for the cups.
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B.4. EXPERIMENT A4

Figure B.27 Classification results of the Bayes’ classifier for the ice tea package.

Figure B.28 Classification results of the Bayes’ classifier for the milk package.

Figure B.29 Classification results of the Bayes’ classifier for the pancake maker.
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APPENDIX B. EMPIRICAL RESULTS

Figure B.30 Classification results of the Bayes’ classifier for the pancake tube.

Figure B.31 Classification results of the Bayes’ classifier for the spatula.

Figure B.32 Overall classification results of the Bayes’ classifier.
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B.5. EXPERIMENT B1

B.5 Experiment B1

Figure B.33 Results for the edit weight parameter experiment for the corn flakes package in the
default scene.

Figure B.34 Results for the edit weight parameter experiment for the corn flakes package in the
default scene when the label of the package is known.

Figure B.35 Results for the edit weight parameter experiment for the spatula in the default
scene when the label of the package is known.
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APPENDIX B. EMPIRICAL RESULTS

Figure B.36 Results for the edit weight parameter experiment for the corn flakes package in the
occlusion scene.

B.6 Experiment B2

Figure B.37 The results of experiment B2 where the target is the cornflakes package and the
edit distance weight is set to 0.4.

Figure B.38 The results of experiment B2 where the target is the cornflakes package and the
edit distance weight is set to 0.5.
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B.6. EXPERIMENT B2

Figure B.39 The results of experiment B2 where the target is the cornflakes package and the
edit distance weight is set to 0.6.

Figure B.40 The results of experiment B2 where the target is the spatula and the edit distance
weight is set to 0.4.

Figure B.41 The results of experiment B2 where the target is the spatula and the edit distance
weight is set to 0.5.
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APPENDIX B. EMPIRICAL RESULTS

Figure B.42 The results of experiment B2 where the target is the spatula and the edit distance
weight is set to 0.6.

B.7 Experiment B3

Figure B.43 Results of experiment B3 for the corn flakes package.
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B.7. EXPERIMENT B3

Figure B.44 Results of experiment B3 for the ice tea package.

Figure B.45 Results of experiment B3 for the spatula.
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Figure B.46 Overall results of experiment B3.
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B.8. EXPERIMENT C1

B.8 Experiment C1

Figure B.47 Results of experiment C1 for the cornflakes package.

Figure B.48 Results of experiment C1 for the ice tea package.
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APPENDIX B. EMPIRICAL RESULTS

Figure B.49 Results of experiment C1 for the spatula.

Figure B.50 Overall results of experiment C1.
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Appendix C

CD Appendix

The attached CD contains following files:

• A digital version of this thesis

• The source code of the perception control framework

• The perception methods libraries compiled for Ubuntu 12.04 LTS 1 for a 64 bit architecture

• The control strategies and rules which were used for the validation

• The training samples and the recordings of the reference scenarios in the form of ROS bags 2

• The validation results in the form of excel tables

1http://releases.ubuntu.com/12.04
2http://wiki.ros.org/Bags
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